Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; 1865(7): 1915-1924, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31109455

ABSTRACT

We have previously shown that blockade of ATP-binding cassette transporter A1 (ABCA1) with cyclosporine A (CsA) stimulates the epithelial sodium channel (ENaC) in cultured distal nephron cells. Here we show that CsA elevated systolic blood pressure in both wild-type and apolipoprotein E (ApoE) knockout (KO) mice to a similar level. The elevated systolic blood pressure was completely reversed by inhibition of cholesterol (Cho) synthesis with lovastatin. Inside-out patch-clamp data show that intracellular Cho stimulated ENaC in cultured distal nephron cells by interacting with phosphatidylinositol­4,5­bisphosphate (PIP2), an ENaC activator. Confocal microscopy data show that both α­ENaC and PIP2 were localized in microvilli via a Cho-dependent mechanism. Deletion of membrane Cho reduced the levels of γ­ENaC in the apical membrane. Reduced ABCA1 expression and elevated intracellular Cho were observed in old mice, compared to young mice. In parallel, cell-attached patch-clamp data from the split-open cortical collecting ducts (CCD) show that ENaC activity was significantly increased in old mice. These data suggest that elevation of intracellular Cho due to blockade of ABCA1 stimulates ENaC, which may contribute to CsA-induced hypertension. This study also implies that reduced ABCA1 expression may mediate age-related hypertension by increasing ENaC activity via elevation of intracellular Cho.


Subject(s)
Cholesterol/metabolism , Cyclosporine/adverse effects , Enzyme Inhibitors/adverse effects , Epithelial Sodium Channels/metabolism , Hypertension/chemically induced , ATP Binding Cassette Transporter 1/antagonists & inhibitors , ATP Binding Cassette Transporter 1/metabolism , Animals , Blood Pressure/drug effects , Cell Line , Hypertension/metabolism , Mice , Mice, Inbred C57BL , Phosphatidylinositol Phosphates/metabolism , Xenopus
2.
Cell Physiol Biochem ; 47(3): 1051-1059, 2018.
Article in English | MEDLINE | ID: mdl-29843130

ABSTRACT

BACKGROUND/AIMS: The epithelial sodium channel (ENaC) in cortical collecting duct (CCD) principal cells plays a critical role in regulating systemic blood pressure. We have previously shown that cholesterol (Cho) in the apical cell membrane regulates ENaC; however, the underlying mechanism remains unclear. METHODS: Patch-clamp technique and confocal microscopy were used to evaluate ENaC activity and density. RESULTS: Here we show that extraction of membrane Cho with methyl-ß-cyclodextrin (MßCD) significantly reduced amiloride-sensitive current and ENaC single-channel activity. The effects were reproduced by inhibition of Cho synthesis in the cells with lovastatin. We have previously shown that phosphatidylinositol-4,5-bisphosphate (PIP2), an ENaC activator, is predominantly located in the microvilli, a specialized apical membrane domain. Here, our confocal microscopy data show that α-ENaC was co-localized with PIP2 in the microvilli and that Cho was also co-localized with PIP2 in the microvilli. Either extraction of Cho with MßCD or inhibition of Cho synthesis with lovastatin consistently reduced the levels of Cho, PIP2, and ENaC in the microvilli. CONCLUSIONS: Since PIP2 can directly stimulate ENaC and also affect ENaC trafficking, these data suggest that depletion of Cho reduces ENaC apical density and activity at least in part by decreasing PIP2 in the microvilli.


Subject(s)
Cholesterol/metabolism , Epithelial Sodium Channels/metabolism , Kidney Tubules, Collecting/metabolism , Microvilli/metabolism , Phosphatidylinositol 4,5-Diphosphate/metabolism , Animals , Xenopus Proteins , Xenopus laevis , beta-Cyclodextrins/pharmacology
3.
Am J Physiol Renal Physiol ; 311(6): F1360-F1368, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27956381

ABSTRACT

A Ca2+-activated nonselective cation channel (NSCCa) is found in principal cells of the mouse cortical collecting duct (CCD). However, the molecular identity of this channel remains unclear. We used mpkCCDc14 cells, a mouse CCD principal cell line, to determine whether NSCCa represents the transient receptor potential (TRP) channel, the melastatin subfamily 4 (TRPM4). A Ca2+-sensitive single-channel current was observed in inside-out patches excised from the apical membrane of mpkCCDc14 cells. Like TRPM4 channels found in other cell types, this channel has an equal permeability for Na+ and K+ and has a linear current-voltage relationship with a slope conductance of ~23 pS. The channel was inhibited by a specific TRPM4 inhibitor, 9-phenanthrol. Moreover, the frequency of observing this channel was dramatically decreased in TRPM4 knockdown mpkCCDc14 cells. Unlike those previously reported in other cell types, the TRPM4 in mpkCCDc14 cells was unable to be activated by hydrogen peroxide (H2O2). Conversely, after treatment with H2O2, TRPM4 density in the apical membrane of mpkCCDc14 cells was significantly decreased. The channel in intact cell-attached patches was activated by ionomycin (a Ca2+ ionophore), but not by ATP (a purinergic P2 receptor agonist). These data suggest that the NSCCa current previously described in CCD principal cells is actually carried through TRPM4 channels. However, the physiological role of this channel in the CCD remains to be further determined.


Subject(s)
Calcium/metabolism , Hydrogen Peroxide/pharmacology , Kidney Tubules, Collecting/drug effects , TRPM Cation Channels/metabolism , Adenosine Triphosphate/pharmacology , Animals , Cell Line , Dose-Response Relationship, Drug , Ionomycin/pharmacology , Kidney Tubules, Collecting/metabolism , Mice , Phenanthrenes/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Transport/drug effects
4.
Am J Physiol Renal Physiol ; 305(3): F304-13, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23720343

ABSTRACT

We used mouse cortical collecting duct principal cells (mpkCCDc14 cell line) as a model to determine whether statins reduce the harmful effects of cyclosporine A (CsA) on the distal nephron. The data showed that treatment of cells with CsA increased transepithelial resistance and that the effect of CsA was abolished by lovastatin. Scanning ion conductance microscopy showed that CsA significantly increased the height of cellular protrusions near tight junctions. In contrast, lovastatin eliminated the protrusions and even caused a modest depression between cells. Western blot analysis and confocal microscopy showed that lovastatin also abolished CsA-induced elevation of both zonula occludens-1 and cholesterol in tight junctions. In contrast, a high concentration of CsA induced apoptosis, which was also attenuated by lovastatin, elevated intracellular ROS via activation of NADPH oxidase, and increased the expression of p47phox. Sustained treatment of cells with lovastatin also induced significant apoptosis, which was attenuated by CsA, but did not elevate intracellular ROS. These results indicate that both CsA and lovastatin are harmful to principal cells of the distal tubule, but via ROS-dependent and ROS-independent apoptotic pathways, respectively, and that they counteract probably via mobilization of cellular cholesterol levels.


Subject(s)
Apoptosis/drug effects , Cyclosporine/antagonists & inhibitors , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Immunosuppressive Agents/antagonists & inhibitors , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/drug effects , Lovastatin/pharmacology , Tight Junctions/drug effects , Analysis of Variance , Animals , Blotting, Western , Cells, Cultured , Cholesterol/biosynthesis , Coloring Agents , Cyclosporine/pharmacology , Epithelial Cells/drug effects , Epithelial Cells/ultrastructure , Immunosuppressive Agents/pharmacology , Kidney Tubules, Collecting/ultrastructure , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , NADPH Oxidases/metabolism , Permeability , Reactive Oxygen Species/metabolism , Tight Junctions/metabolism , Tight Junctions/ultrastructure , Zonula Occludens-1 Protein/biosynthesis
5.
J Physiol ; 587(Pt 11): 2663-76, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19359370

ABSTRACT

Airway and alveolar fluid clearance is mainly governed by vectorial salt movement via apically located rate-limiting Na(+) channels (ENaC) and basolateral Na(+)/K(+)-ATPases. ENaC is regulated by a spectrum of protein kinases, i.e. protein kinase A (PKA), C (PKC), and G (PKG). However, the molecular mechanisms for the regulation of ENaC by cGMP/PKG remain to be elucidated. In the present study, we studied the pharmacological responses of native epithelial Na(+) channels in human Clara cells and human alphabetagammadelta ENaCs expressed in oocytes to cGMP. 8-pCPT-cGMP increased amiloride-sensitive short-circuit current (I(sc)) across H441 monolayers and heterologously expressed alphabetagammadelta ENaC activity in a dose-dependent manner. Similarly, 8-pCPT-cGMP (a PKGII activator) but not 8-Br-cGMP (a PKGI activator) increased amiloride-sensitive whole cell currents in H441 cells in the presence of CFTRinh-172 and diltiazem. In all cases, the cGMP-activated Na(+) channel activity was inhibited by Rp-8-pCPT-cGMP, a specific PKGII inhibitor. This was substantiated by the evidence that PKGII was the sole isoform expressed in H441 cells at the protein level. Importantly, intratracheal instillation of 8-pCPT-cGMP in BALB/c mice increased amiloride-sensitive alveolar fluid clearance by approximately 30%, consistent with the in vitro results. We therefore conclude that PKGII is an activator of lung epithelial Na(+) channels, which may expedite the resolution of oedematous fluid in alveolar sacs.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Epithelial Sodium Channels/metabolism , Pulmonary Alveoli/enzymology , Respiratory Mucosa/enzymology , Amiloride/pharmacology , Animals , Cell Line , Cyclic AMP/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Cyclic GMP-Dependent Protein Kinase Type I , Cyclic GMP-Dependent Protein Kinase Type II , Cyclic GMP-Dependent Protein Kinases/genetics , Dose-Response Relationship, Drug , Epithelial Sodium Channel Blockers , Epithelial Sodium Channels/genetics , Humans , Membrane Potentials , Mice , Mice, Inbred BALB C , Oocytes , Pulmonary Alveoli/drug effects , Rabbits , Respiratory Mucosa/drug effects , Sodium Channel Blockers/pharmacology , Thionucleotides/pharmacology , Transfection , Xenopus
6.
J Membr Biol ; 220(1-3): 21-31, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17952362

ABSTRACT

We used patch-clamp techniques and A6 distal nephron cells as a model to determine how cholesterol regulates the renal epithelial sodium channel (ENaC). We found that luminal methyl-beta-cyclodextrin (mbetaCD, a cholesterol scavenger) did not acutely affect ENaC activity at a previously used concentration of 10 mM: but significantly decreased ENaC activity both when the cell membrane was stretched and at a higher concentration of 50 mM: Luminal cholesterol had no effect on ENaC activity at a concentration of 50 microg/ml but significantly increased ENaC activity both when the cell membrane was stretched and at a higher concentration of 200 microg/ml. Confocal microscopy data indicate that membrane tension facilitates both mbetaCD extraction of cholesterol and A6 cell uptake of exogenous cholesterol. Together with previous findings that cholesterol in the apical membrane is tightly packed with sphingolipids and that stretch can affect lipid distribution, our data suggest that membrane tension modulates the effects of mbetaCD and cholesterol on ENaC activity, probably by facilitating both extraction and enrichment of apical cholesterol.


Subject(s)
Cell Membrane/drug effects , Cholesterol/metabolism , Epithelial Sodium Channels/physiology , beta-Cyclodextrins/pharmacology , Animals , Biological Transport/drug effects , Cell Line , Cell Membrane/metabolism , Cell Membrane/physiology , Dose-Response Relationship, Drug , Epithelial Sodium Channels/metabolism , Kidney/cytology , Kidney/metabolism , Membrane Lipids/metabolism , Membrane Potentials/drug effects , Microscopy, Confocal , Nephrons/cytology , Nephrons/drug effects , Nephrons/physiology , Patch-Clamp Techniques , Sodium/metabolism
7.
Pflugers Arch ; 455(1): 169-80, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17605040

ABSTRACT

Recent studies suggest that the activity of epithelial sodium channels (ENaC) is increased by phosphatidylinositides, especially phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P(3)). Stimulation of phospholipase C by either adenosine triphosphate (ATP)-activation of purinergic P2Y receptors or epidermal growth factor (EGF)-activation of EGF receptors reduces membrane PI(4,5)P(2), and consequently decreases ENaC activity. Since ATP and EGF may be trapped in cysts formed by the distal tubule, it is possible that ENaC inhibition induced by ATP and EGF facilitates cyst formation in polycystic kidney diseases (PKD). However, some results suggest that ENaC activity is increased in PKD. In contrast to P2Y and EGF receptors, stimulation of insulin-like growth factor-1 (IGF-1) receptor by aldosterone or insulin produces PI(3,4,5)P(3), and consequently increases ENaC activity. The acute effect of aldosterone on ENaC activity through PI(3,4,5)P(3) possibly accounts for the initial feedback for blood volume recovery after hypovolemic hypotension. PI(4,5)P(2) and PI(3,4,5)P(3), respectively, interacts with the N terminus of beta-ENaC and the C terminus of gamma-ENaC. However, whether ENaC selectively binds to PI(4,5)P(2) and PI(3,4,5)P(3) over other anionic phospholipids remains unclear.


Subject(s)
Epithelial Sodium Channels/drug effects , Phosphatidylinositols/pharmacology , Amino Acid Sequence , Animals , Epithelial Sodium Channels/physiology , Humans , Inositol 1,4,5-Trisphosphate/pharmacology , Molecular Sequence Data , Phosphatidylinositol 4,5-Diphosphate/pharmacology , Stimulation, Chemical , Type C Phospholipases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...