Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Type of study
Publication year range
1.
Toxicol Appl Pharmacol ; 486: 116933, 2024 May.
Article in English | MEDLINE | ID: mdl-38631520

ABSTRACT

"White pollution" has a significant impact on male reproduction. Di-n-butyl phthalate (DBP) is one of the most important factors in this type of pollution. Currently, research from international sources has demonstrated the significant reproductive toxicity of DBP. However, most of these studies have focused mainly on hormones expression at the protein and mRNA levels and the specific molecular targets of DBP and its mechanisms of action remain unclear. In this study, we established a Sprague Dawley pregnant mouse model exposed to DBP, and all male offspring were immediately euthanized at birth and bilateral testes were collected. We found through transcriptome sequencing that cell apoptosis and MAPK signaling pathway are the main potential pathways for DBP induced reproductive toxicity. Molecular biology analyses revealed a significant increase in the protein levels of JNK1(MAPK8) and BAX, as well as a significant increase in the BAX/BCL2 ratio after DBP exposure. Therefore, we propose that DBP induces reproductive toxicity by regulating JNK1 expression to activate the MAPK signaling pathway and induce reproductive cell apoptosis. In conclusion, our study provides the first evidence that the MAPK signaling pathway is involved in DBP-induced reproductive toxicity and highlights the importance of JNK1 as a potential target of DBP in inducing reproductive toxicity.


Subject(s)
Apoptosis , Dibutyl Phthalate , MAP Kinase Signaling System , Testis , Animals , Male , Dibutyl Phthalate/toxicity , Testis/drug effects , Testis/metabolism , Testis/pathology , Female , Mice , MAP Kinase Signaling System/drug effects , Pregnancy , Apoptosis/drug effects , Mitogen-Activated Protein Kinase 8/metabolism , Mitogen-Activated Protein Kinase 8/genetics
2.
Foods ; 13(8)2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38672937

ABSTRACT

Dictyophora rubrovolvata volva, an agricultural by-product, is often directly discarded resulting in environmental pollution and waste of the proteins' resources. In this study, D. rubrovolvata volva proteins (DRVPs) were recovered using the ultrasound-assisted extraction (UAE) method. Based on one-way tests, orthogonal tests were conducted to identify the effects of the material-liquid ratio, pH, extraction time, and ultrasonic power on the extraction rate of DRVPs. Moreover, the impact of UAE on the physicochemical properties, structure characteristics, intermolecular forces, and functional attributes of DRVPs were also examined. The maximum protein extraction rate was achieved at 43.34% under the best extraction conditions of UAE (1:20 g/mL, pH 11, 25 min, and 550 W). UAE significantly altered proteins' morphology and molecular size compared to the conventional alkaline method. Furthermore, while UAE did not affect the primary structure, it dramatically changed the secondary and tertiary structure of DRVPs. Approximately 13.42% of the compact secondary structures (α-helices and ß-sheets) underwent a transition to looser structures (ß-turns and random coils), resulting in the exposure of hydrophobic groups previously concealed within the molecule's core. In addition, the driving forces maintaining and stabilizing the sonicated protein aggregates mainly involved hydrophobic forces, disulfide bonding, and hydrogen bonding interactions. Under specific pH and temperature conditions, the water holding capacity, oil holding capacity, foaming capacity and stability, emulsion activity, and stability of UAE increased significantly from 2.01 g/g to 2.52 g/g, 3.90 g/g to 5.53 g/g, 92.56% to 111.90%, 58.97% to 89.36%, 13.85% to 15.37%, and 100.22% to 136.53%, respectively, compared to conventional alkali extraction. The findings contributed to a new approach for the high-value utilization of agricultural waste from D. rubrovolvata.

3.
J Biol Chem ; 300(4): 107139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447792

ABSTRACT

Androgen receptor (AR) is one of the key targets for the treatment of castration-resistant prostate cancer (CRPC). Current endocrine therapy can greatly improve patients with CRPC. However, with the change of pathogenic mechanism, acquired resistance often leads to the failure of treatment. Studies have shown that tanshinone IIA (TS-IIA) and its derivatives have significant antitumor activity, and have certain AR-targeting effects, but the mechanism is unknown. In this study, the TS-IIA analog TB3 was found to significantly inhibit the growth of CRPC in vitro and in vivo. Molecular docking, cellular thermal shift assay, and cycloheximide experiments confirmed that AR was the target of TB3 and promoted the degradation of AR. Furthermore, TB3 can significantly inhibit glycolysis metabolism by targeting the AR/PKM2 axis. The addition of pyruvic acid could significantly alleviate the inhibitory effect of TB3 on CRPC cells. Besides, the knockdown of AR or PKM2 also could reverse the effect of TB3 on CRPC cells. Taken together, our study suggests that TS-IIA derivative TB3 inhibits glycolysis to prevent the CRPC process by targeting the AR/PKM2 axis.


Subject(s)
Abietanes , Glycolysis , Prostatic Neoplasms, Castration-Resistant , Receptors, Androgen , Thyroid Hormone-Binding Proteins , Animals , Humans , Male , Mice , Abietanes/pharmacology , Carrier Proteins/metabolism , Carrier Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Glycolysis/drug effects , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mice, Nude , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Receptors, Androgen/metabolism , Receptors, Androgen/genetics , Thyroid Hormones/metabolism
4.
Biochem Pharmacol ; 219: 115960, 2024 01.
Article in English | MEDLINE | ID: mdl-38049008

ABSTRACT

Prostate cancer is the most common malignant tumor among men worldwide. Currently, the main treatments are radical prostatectomy, radiotherapy, chemotherapy, and endocrine therapy. However, most of them are poorly effective and induce side effects. Polo-like kinase 1 (PLK1) regulates cell cycle and mitosis. Its inhibitor BI2536 promotes the therapeutic effect of nilotinib in chronic myeloid leukemia, enhances the sensitivity of neural tube cell tumors to radiation therapy and PLK1 silencing enhances the sensitivity of squamous cell carcinoma to cisplatin. Therefore, the aim of this study was to evaluate the effect of the PLK1 inhibitor L-shaped ortho-quinone analog TE6 on prostate cancer. In vitro on prostate cancer cells showed that TE6 inhibited PLK1 protein expression and consequently cell proliferation by blocking the cell cycle at G2 phase. In vivo on a subcutaneous tumor model in nude mice confirmed that TE6 effectively inhibited tumor growth in nude mice, inhibited PLK1 expression and regulated the expression of cell cycle proteins such as p21, p53, CDK1, Cdc25C, and cyclinB1. Thus, PLK1 was identified as the target protein of TE6, these results reveal the critical role of PLK1 in the growth and survival of prostate cancer and point out the ability of TE6 on targeting PLK1, being a potential drug for prostate cancer therapy.


Subject(s)
G2 Phase , Polo-Like Kinase 1 , Prostatic Neoplasms , Quinones , Polo-Like Kinase 1/antagonists & inhibitors , Quinones/chemistry , Quinones/pharmacology , Prostatic Neoplasms/drug therapy , G2 Phase/drug effects , Cell Proliferation/drug effects , Heterografts , Humans , Animals , Mice , Male , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Cell Line, Tumor , Molecular Structure
5.
Eur J Pharm Sci ; 192: 106660, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38052256

ABSTRACT

A series of novel prenylated chalcone derivatives with broad spectrum anticancer potential were designed and synthesized. Some of the synthesized target compounds showed potent anti-proliferative activities toward LNCaP (prostate cancer cell line), K562 (human leukemia cells), A549 (human lung carcinoma cell line) and HeLa (cervical cancer cell line) cell lines. Among of the active compounds, (E)-1-(4-(2-(diethylamino)ethoxy)-2-hydroxy-6-methoxy-3-(3-methylbut-2-en-1-yl)phenyl)-3-(pyridin-3-yl)prop-2-en-1-one (C36) was directly interacted with protein kinase B (PKB), also known as AKT, significantly inhibited the pPI3K, pAKT(Ser473) protein levels to repress the growth of cancer cells by inducing apoptosis, arresting cell cycle. Our studies provide support for prenylated chalcone derivatives potential applications in cancer treatment as a potential AKT inhibitor.


Subject(s)
Antineoplastic Agents , Chalcone , Chalcones , Humans , Chalcones/pharmacology , Proto-Oncogene Proteins c-akt/pharmacology , Cell Proliferation , Chalcone/pharmacology , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Apoptosis , Structure-Activity Relationship
6.
Mater Today Bio ; 20: 100628, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37122839

ABSTRACT

Sustained drug release has attracted increasing interest in targeted drug therapy. However, existing methods of drug therapy suffer drug action time, large fluctuations in the effective concentration of the drug, and the risk of side effects. Here, a biodegradable composite of polybutylene adipate co-terephthalate/polyvinylpyrrolidone (PBAT/PVP) consisting of electrospun hollow microspheres as sustained-released drug carriers is presented. The as-prepared PBAT/PVP composites show faster degradation rate and drug (Erlotinib) release than that of PBAT. Furthermore, PBAT/PVP composites loaded with Erlotinib provide sustained release effect, thus achieving a better efficacy than that after the direct injection of erlotinib due to the fact that the composites allow a high drug concentration in the tumor for a longer period. Hence, this work provides a potential effective solution for clinical drug therapy and tissue engineering using drug microspheres with a sustained release.

7.
Brain Behav ; 13(6): e3013, 2023 06.
Article in English | MEDLINE | ID: mdl-37072935

ABSTRACT

INTRODUCTION: Regulation of brain-derived neurotrophic factor (BDNF) in the basal forebrain ameliorates sleep deprivation-induced fear memory impairments in rodents. Antisense oligonucleotides (ASOs) targeting ATXN2 was a potential therapy for spinocerebellar ataxia, whose pathogenic mechanism associates with reduced BDNF expression. We tested the hypothesis that ASO7 targeting ATXN2 could affect BDNF levels in mouse basal forebrain and ameliorate sleep deprivation-induced fear memory impairments. METHODS: Adult male C57BL/6 mice were used to evaluate the effects of ASO7 targeting ATXN2 microinjected into the bilateral basal forebrain (1 µg, 0.5 µL, each side) on spatial memory, fear memory and sleep deprivation-induced fear memory impairments. Spatial memory and fear memory were detected by the Morris water maze and step-down inhibitory avoidance test, respectively. Immunohistochemistry, RT-PCR, and Western blot were used to evaluate the changes of levels of BDNF, ATXN2, and postsynaptic density 95 (PSD95) protein as well as ATXN2 mRNA. The morphological changes in neurons in the hippocampal CA1 region were detected by HE staining and Nissl staining. RESULTS: ASO7 targeting ATXN2 microinjected into the basal forebrain could suppress ATXN2 mRNA and protein expression for more than 1 month and enhance spatial memory but not fear memory in mice. BDNF mRNA and protein expression in basal forebrain and hippocampus was increased by ASO7. Moreover, PSD95 expression and synapse formation were increased in the hippocampus. Furthermore, ASO7 microinjected into the basal forebrain increased BDNF and PSD95 protein expression in the basal forebrain of sleep-deprived mice and counteracted sleep deprivation-induced fear memory impairments. CONCLUSION: ASOs targeting ATXN2 may provide effective interventions for sleep deprivation-induced cognitive impairments.


Subject(s)
Basal Forebrain , Sleep Deprivation , Mice , Male , Animals , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Brain-Derived Neurotrophic Factor/genetics , Spatial Memory , Basal Forebrain/metabolism , Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/metabolism , Mice, Inbred C57BL , Memory Disorders/etiology , Memory Disorders/complications , RNA, Messenger/metabolism
8.
Sleep ; 46(11)2023 11 08.
Article in English | MEDLINE | ID: mdl-36827092

ABSTRACT

STUDY OBJECTIVES: This study verified that sleep deprivation before and after skin/muscle incision and retraction (SMIR) surgery increased the risk of chronic pain and investigated the underlying roles of microglial voltage-dependent anion channel 1 (VDAC1) signaling. METHODS: Adult mice received 6 hours of total sleep deprivation from 1 day prior to SMIR until the third day after surgery. Mechanical and heat-evoked pain was assessed before and within 21 days after surgery. Microglial activation and changes in VDAC1 expression and oligomerization were measured. Minocycline was injected to observe the effects of inhibiting microglial activation on pain maintenance. The VDAC1 inhibitor 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) and oligomerization inhibitor VBIT-4 were used to determine the roles of VDAC1 signaling on microglial adenosine 5' triphosphate (ATP) release, inflammation (IL-1ß and CCL2), and chronicity of pain. RESULTS: Sleep deprivation significantly increased the pain duration after SMIR surgery, activated microglia, and enhanced VDAC1 signaling in the spinal cord. Minocycline inhibited microglial activation and alleviated sleep deprivation-induced pain maintenance. Lipopolysaccharide (LPS)-induced microglial activation was accompanied by increased VDAC1 expression and oligomerization, and more VDAC1 was observed on the cell membrane surface compared with control. DIDS and VBIT-4 rescued LPS-induced microglial ATP release and IL-1ß and CCL2 expression. DIDS and VBIT-4 reversed sleep loss-induced microglial activation and pain chronicity in mice, similar to the effects of minocycline. No synergistic effects were found for minocycline plus VBIT-4 or DIDS. CONCLUSIONS: Perioperative sleep deprivation activated spinal microglia and increases the risk of chronic postsurgical pain in mice. VDAC1 signaling regulates microglial activation-related ATP release, inflammation, and chronicity of pain.


Subject(s)
Microglia , Sleep Deprivation , Mice , Animals , Microglia/metabolism , Sleep Deprivation/complications , Sleep Deprivation/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Minocycline/pharmacology , Minocycline/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/metabolism , Lipopolysaccharides/metabolism , Pain, Postoperative , Inflammation/metabolism , Adenosine Triphosphate
9.
Dose Response ; 20(2): 15593258221105370, 2022.
Article in English | MEDLINE | ID: mdl-35663493

ABSTRACT

Objective: To evaluate the clinical efficacy and safety of baricitinib, a Janus kinase (JAK) inhibitor, in treating patient with progressing vitiligo, and to further explore the regulation of baricitinib on melanocytes (MCs) in vitro. Methods: Four patients with progressing vitiligo were treated with oral baricitinib for a total of 12 weeks. MCs were cultured in vitro and irradiated by high-dose ultraviolet B (UVB, 150mJ/cm2) to make an MC damaged model (MC-Ds). Baricitinib was added at a final concentration of 25 µM. Dopamine staining and NaOH method were used to measure the tyrosinase activity and melanin level, respectively, real-time quantitative polymerase chain reaction (RT-qPCR) was used to measure the mRNA levels of tyrosinase (TYR), tyrosinase-related protein-1 (TRP-1). Results: Significant re-pigmentation was observed in the week 12 without obvious side effects. Depigmentation occurred in 2 patients at the 3-month follow-up. Laboratory research found that higher doses of UVB irradiation (150mJ/cm2) could decrease melanin content of MCs, baricitinib (25 µM) could significantly promote tyrosinase activity, melanin content, and TYR, TRP-1 gene expression of MC-Ds. Conclusion: Our preliminary study showed that baricitinib was effective and safe in treating progressing vitiligo. Baricitinib could promote tyrosinase activity, melanin content and TYR, TRP1 gene expression of MC-Ds in vitro.

10.
Vet Med Sci ; 7(1): 156-163, 2021 01.
Article in English | MEDLINE | ID: mdl-32812379

ABSTRACT

N-acetylcysteine (NAC) has been found to enhance the protective ability of cells to counter balance oxidative stress and inflammation. To investigate the effects of dietary NAC supplementation on the reproductive performance of goats, the reproductive performance and endometrial transcriptome of goats fed with diets with NAC (NAC group) and without NAC supplementation (control group) were compared. Results showed that the goats fed with 0.03% and 0.05% NAC had similar litter size, birth weight, nitric oxide (NO), sex hormones and amino acids levels compared with the goats of the control group. However, feeding with 0.07% NAC supplementation from day 0 to day 30 of gestation remarkably increased the litter size of goats. The goats of the 0.07% NAC group presented increased levels of NO relative to the control group, but their sex hormones and amino acids showed no differences. Comparative transcriptome analysis identified 207 differentially expressed genes (DEGs) in the endometrium between the control and the 0.07% NAC groups. These DEGs included 146 upregulated genes and 61 downregulated genes in the 0.07% NAC group. They were primarily involved in the cellular response to toxic substances, oxidoreductase activity, immune receptor activity, signalling receptor binding, cytokine-cytokine receptor interactions, PI3K-Akt signalling pathway and PPAR signalling pathway. In conclusion, results showed that dietary 0.07% NAC supplementation exerted a beneficial effect on the survival of goat embryos at the early pregnancy stage. Such positive outcome might be due to the increased NO production and affected expression of genes involved in the anti-inflammation pathways of the endometrium.


Subject(s)
Acetylcysteine/metabolism , Base Sequence/drug effects , Free Radical Scavengers/metabolism , Goats/physiology , Oxidative Stress/drug effects , Reproduction/drug effects , Acetylcysteine/administration & dosage , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Female , Free Radical Scavengers/administration & dosage , Random Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...