Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Publication year range
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(7): 830-834, 2024 Jul 10.
Article in Chinese | MEDLINE | ID: mdl-38946367

ABSTRACT

OBJECTIVE: To explore the genetic basis for a child featuring global developmental delay and epilepsy. METHODS: A child who had presented at Guangzhou Women and Children's Medical Center Liuzhou Hospital on February 19, 2023 was selected as the study subject. Clinical data of the child was collected. The child was subjected to whole exome sequencing, and candidate variant was validated by Sanger sequencing and bioinformatic analysis. RESULTS: The child, an 8-month-old girl, had manifested with global developmental delay, epilepsy, and hyperlactacidemia. Cranial MRI revealed diverse hypomyelinating leukodystrophies. Electroencephalogram showed slow background activities. Genetic testing revealed that she has harbored a homozygous variant of the SLC25A12 gene, namely c.115T>G (p.Phe39Val), for which both of her parents were heterozygous carriers. Based on the guidelines from the American College of Medical Genetics and Genomics, the variant was predicted to be of uncertain significance (PM2_Supporting+PM3_Supporting+PP3_Moderate+PP4_Moderate). I-Mutant v3.0 software predicted that the variant may affect the stability of protein product. CONCLUSION: The homozygous c.115T>G (p.Phe39Val) variant of the SLC25A12 gene probably underlay the pathogenesis of the disease in this child.


Subject(s)
Developmental Disabilities , Epilepsy , Homozygote , Humans , Female , Infant , Epilepsy/genetics , Developmental Disabilities/genetics , Mutation , Mitochondrial Membrane Transport Proteins/genetics , Exome Sequencing
2.
Sci Rep ; 10(1): 18054, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093547

ABSTRACT

The Jinghe River remains the major sediment source of the Yellow River in China; however, sediment discharge in the Jinghe River has reduced significantly since the 1950s. The objective of this study is to identify the causes of sediment yield variations in the Jinghe River Basin based on soil and water conservation methods and rainfall analyses. The results revealed that soil and water conservation projects were responsible for half of the total sediment reduction; sediment retention due to reservoirs and water diversion projects was responsible for 1.3% of the total reduction. Moreover, the Jinghe River Basin has negligible opportunity to improve its vegetation cover (currently 55% of the basin is covered with lawns and trees), and silt-arrester dams play a smaller role in reducing sediment significantly before they are entirely full. Therefore, new large-scale sediment trapping projects must be implemented across the Jinghe River Basin, where heavy rainfall events are likely to substantially increase in the future, leading to higher sediment discharge.

SELECTION OF CITATIONS
SEARCH DETAIL
...