Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
Chembiochem ; : e202400304, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183177

ABSTRACT

Bioorthogonal chemistry has become a mainstay in chemical biology and is making inroads in the clinic with recent advances in protein targeting and drug release. Since the field's beginning, a major focus has been on designing bioorthogonal reagents with good selectivity, reactivity, and stability in complex biological environments. More recently, chemists have imbued reagents with new functionalities like click-and-release or light/enzyme-controllable reactivity. We have previously developed a controllable cyclopropene-based bioorthogonal ligation, which has excellent stability in physiological conditions and can be triggered to react with tetrazines by exposure to enzymes, biologically significant small molecules, or light spanning the visual spectrum. Here, to improve reactivity and gain a better understanding of this system, we screened diene reaction partners for the cyclopropene. We found that a cyclopropene-quinone pair is 26 times faster than reactions with 1,2,4,5-tetrazines. Additionally, we showed that the reaction of the cyclopropene-quinone pair can be activated by two orthogonal mechanisms, caging group removal on the cyclopropene and oxidation/reduction of the quinone. Finally, we demonstrated that this caged cyclopropene-quinone can be used as a bioorthogonal imaging tool to label the membranes of fixed, cultured cells.

2.
J Clin Med ; 13(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39064291

ABSTRACT

Background: Heart failure (HF) remains a leading cause of morbidity and mortality globally, necessitating the identification of reliable prognostic biomarkers to guide therapeutic interventions. Recent clinical observations have underscored phenylalanine (PHE) as a prognostic marker in HF, although the mechanisms involving inter-organ crosstalk remain understood. Methods: This study adopted a dull approach, with a retrospective analysis of 550 HF patients to establish the prognostic value of pre-discharge PHE levels and a study on the inter-organ crosstalk of PHE among 24 patients. We analyzed the correlations between PHE concentrations and clinical outcomes, alongside a comprehensive examination of PHE metabolism across the skeletal muscle, liver, heart, kidney, and lung. Results: In the clinical prognostic analysis of 550 patients hospitalized for acute decompensated HF, elevated PHE levels (≥65.6 µM) were significantly and independently associated with increased all-cause mortality during a median follow-up of 4.5 years (log rank = 36.7, p < 0.001), underscoring its value as a prognostic marker in HF. The inter-organic crosstalk study elucidated the mechanism associated with PHE elevation in patients with HF, characterized by an increase in PHE output in skeletal muscle and a decrease in hepatic and cardiac PHE uptakes. Notably, PHE concentration gradients across these organs were correlated with HF severity, such as the NYHA functional class, B-type natriuretic peptide levels, and the presence of acute HF. Conclusions: Our findings confirm the prognostic significance of PHE in patients with HF and unveil the complex metabolic interplay among key organs that contribute to PHE dysregulation. These insights not only reinforce the importance of metabolic monitoring in HF management but also open avenues for therapeutic targets.

3.
Curr Opin Chem Biol ; 81: 102471, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38833913

ABSTRACT

Monoclonal antibodies and antibody fragments have proven to be highly effective vectors for the delivery of radionuclides to target tissues for positron emission tomography (PET) and single-photon emission computed tomography (SPECT). However, the stochastic methods that have traditionally been used to attach radioisotopes to these biomolecules inevitably produce poorly defined and heterogeneous probes and can impair the ability of the immunoglobulins to bind their molecular targets. In response to this challenge, an array of innovative site-specific and site-selective bioconjugation strategies have been developed, and these approaches have repeatedly been shown to yield better-defined and more homogeneous radioimmunoconjugates with superior in vivo performance than their randomly modified progenitors. In this Current Opinion in Chemical Biology review, we will examine recent advances in this field, including the development - and, in some cases, clinical translation - of nuclear imaging agents radiolabeled using strategies that target the heavy chain glycans, peptide tags, and unnatural amino acids.


Subject(s)
Immunoconjugates , Humans , Animals , Immunoconjugates/chemistry , Positron-Emission Tomography/methods , Tomography, Emission-Computed, Single-Photon/methods , Radiopharmaceuticals/chemistry , Antibodies, Monoclonal/chemistry
4.
Magn Reson Med ; 92(2): 836-852, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38502108

ABSTRACT

PURPOSE: Arterial spin labeling (ASL) is a widely used contrast-free MRI method for assessing cerebral blood flow (CBF). Despite the generally adopted ASL acquisition guidelines, there is still wide variability in ASL analysis. We explored this variability through the ISMRM-OSIPI ASL-MRI Challenge, aiming to establish best practices for more reproducible ASL analysis. METHODS: Eight teams analyzed the challenge data, which included a high-resolution T1-weighted anatomical image and 10 pseudo-continuous ASL datasets simulated using a digital reference object to generate ground-truth CBF values in normal and pathological states. We compared the accuracy of CBF quantification from each team's analysis to the ground truth across all voxels and within predefined brain regions. Reproducibility of CBF across analysis pipelines was assessed using the intra-class correlation coefficient (ICC), limits of agreement (LOA), and replicability of generating similar CBF estimates from different processing approaches. RESULTS: Absolute errors in CBF estimates compared to ground-truth synthetic data ranged from 18.36 to 48.12 mL/100 g/min. Realistic motion incorporated into three datasets produced the largest absolute error and variability between teams, with the least agreement (ICC and LOA) with ground-truth results. Fifty percent of the submissions were replicated, and one produced three times larger CBF errors (46.59 mL/100 g/min) compared to submitted results. CONCLUSIONS: Variability in CBF measurements, influenced by differences in image processing, especially to compensate for motion, highlights the significance of standardizing ASL analysis workflows. We provide a recommendation for ASL processing based on top-performing approaches as a step toward ASL standardization.


Subject(s)
Brain , Cerebrovascular Circulation , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Spin Labels , Humans , Cerebrovascular Circulation/physiology , Reproducibility of Results , Brain/diagnostic imaging , Brain/blood supply , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Perfusion Imaging/methods , Male , Female , Adult , Algorithms
5.
Int J Oral Maxillofac Surg ; 53(7): 600-606, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38494409

ABSTRACT

Zygomatic implants (ZI) are a valuable option for supporting an obturator prosthesis after maxillary resection. This study was performed to assess the clinical outcomes of a digitally validated guided technique for ZI placement, followed by immediate prosthetic obturation. The primary objective was to evaluate implant survival, while the secondary objective was to assess patient-reported quality of life post-rehabilitation. Twelve patients treated for head and neck cancer received a total of 36 ZI after ablative surgery. The mean duration of ZI follow-up was 30.1 months. The survival rate of ZI placed in non-irradiated patients was 100%, while it was 85% in irradiated patients. Patient-reported outcomes were evaluated using the Liverpool Oral Rehabilitation Questionnaire (LORQv3) and the University of Washington Quality of Life Questionnaire (UW-QOL v4). Most patients reported satisfactory outcomes in the oral function domain of the LORQv3 (mean score 17.7 ± 4.5; possible range 12-48, with lower scores indicating better outcomes). Regarding the UW-QOL v4, the swallowing and chewing domains had the highest scores (mean 97.5 ± 8.7 and 95.8 ± 14.4, respectively; maximum possible score of 100). In conclusion, this treatment approach improves function and quality of life after maxillary ablative surgery. However, irradiated patients showed a noticeable trend of higher implant failure, and this was influenced by tumour position and size impacting the radiation dose to the zygomatic bone.


Subject(s)
Head and Neck Neoplasms , Quality of Life , Zygoma , Humans , Male , Female , Middle Aged , Zygoma/surgery , Head and Neck Neoplasms/surgery , Head and Neck Neoplasms/radiotherapy , Aged , Treatment Outcome , Follow-Up Studies , Surveys and Questionnaires , Adult , Surgery, Computer-Assisted/methods , Dental Implants , Patient Reported Outcome Measures , Maxilla/surgery , Dental Prosthesis, Implant-Supported
6.
J Neurosci ; 44(15)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38418220

ABSTRACT

The conformational state of DNA fine-tunes the transcriptional rate and abundance of RNA. Here, we report that G-quadruplex DNA (G4-DNA) accumulates in neurons, in an experience-dependent manner, and that this is required for the transient silencing and activation of genes that are critically involved in learning and memory in male C57/BL6 mice. In addition, site-specific resolution of G4-DNA by dCas9-mediated deposition of the helicase DHX36 impairs fear extinction memory. Dynamic DNA structure states therefore represent a key molecular mechanism underlying memory consolidation.One-Sentence Summary: G4-DNA is a molecular switch that enables the temporal regulation of the gene expression underlying the formation of fear extinction memory.


Subject(s)
G-Quadruplexes , Male , Animals , Mice , Extinction, Psychological , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Fear , DNA/metabolism
7.
Neuron ; 112(8): 1249-1264.e8, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38366598

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Mice , Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/metabolism , Neurons/metabolism
8.
Heart Rhythm ; 21(6): 715-722, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38266751

ABSTRACT

BACKGROUND: The optimal dose of direct oral anticoagulants (DOACs) to prevent ischemic stroke (IS) and systemic thromboembolism (STE) in atrial fibrillation (AF) patients with a predisposing bleeding risk remains unclear. OBJECTIVE: The purpose of this study was to compare the effectiveness and safety of different DOAC dosage regimens in AF patients with high bleeding risk but low thrombosis risk. METHODS: This retrospective observational study was conducted with the National Health Insurance claims database in Taiwan to include AF patients aged 20 up to 75 years, under DOAC therapy, with CHA2DS2-VASc score of 1 for males and 2 for females and HAS-BLED score ≥3. Standard-dose regimen was defined as dabigatran 300 mg, rivaroxaban 20 mg, apixaban 10 mg, or edoxaban 60 mg per day. Any other lower-dose regimen were defined as the low-dose regimen. The primary outcomes were IS and major bleeding (MB). The secondary outcomes were STE, gastrointestinal bleeding, intracranial hemorrhage, and cardiovascular death. RESULTS: A total of 964 patients were included (52.1% standard-dose regimen). Median HAS-BLED score was 3 [interquartile range 3-3]. Compared with standard-dose group, patients in the low-dose group had a significantly increased risk of IS (adjusted hazard ratio [aHR] 5.13; 95% confidence interval 1.37-19.22) and STE (aHR 3.14 [1.05-9.37]) but similar risk of MB (aHR 0.45 [0.12-1.67]). The risks of other hemorrhage and cardiovascular death were similar between the 2 dose groups. CONCLUSION: Among patients with a predominant bleeding risk but relatively low thrombosis risk, the low-dose DOAC regimen is not a more appropriate selection than standard-dose regimen.


Subject(s)
Atrial Fibrillation , Hemorrhage , Humans , Atrial Fibrillation/complications , Atrial Fibrillation/drug therapy , Male , Female , Retrospective Studies , Hemorrhage/chemically induced , Hemorrhage/epidemiology , Middle Aged , Administration, Oral , Aged , Taiwan/epidemiology , Anticoagulants/administration & dosage , Anticoagulants/adverse effects , Risk Assessment/methods , Dose-Response Relationship, Drug , Adult , Risk Factors , Factor Xa Inhibitors/administration & dosage , Factor Xa Inhibitors/adverse effects , Follow-Up Studies , Incidence , Pyrazoles/administration & dosage , Pyrazoles/adverse effects , Young Adult
9.
Int J Radiat Oncol Biol Phys ; 118(3): 688-696, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37729971

ABSTRACT

PURPOSE: Prostate-specific membrane antigen positron emission tomography/computed tomography (PSMA PET/CT) scan is the standard imaging procedure for biochemical recurrent prostate cancer postprostatectomy because of its high detection rate at low serum prostate-specific antigen levels. However, existing guidelines for clinical target volume (CTV) in prostate bed salvage external beam radiation therapy (sEBRT) are primarily based on experience-based clinical consensus and have been validated using conventional imaging modalities. Therefore, this study aimed to optimize CTV definition in sEBRT by using PSMA PET/CT-detected local recurrences (LRs). METHODS AND MATERIALS: Patients with suspected LR on PSMA PET/CT postprostatectomy were retrospectively enrolled in 9 Dutch centers. Anonymized scans were centrally reviewed by an expert nuclear medicine physician. Each boundary of the CTV guideline from the Groupe Francophone de Radiothérapie en Urologie (GFRU) was evaluated and adapted to improve the accuracy and coverage of the area at risk of LR (CTV) on PSMA PET/CT. The proposed CTV adaptation was discussed with the radiation oncologists of the participating centers, and final consensus was reached. To assess reproducibility, the participating centers were asked to delineate 3 new cases according to the new PERYTON-CTV, and the submitted contours were evaluated using the Dice similarity coefficient (DSC). RESULTS: After central review, 93 LRs were identified on 83 PSMA PET/CTs. The proposed CTV definition improved the coverage of PSMA PET/CT-detected LRs from 67% to 96% compared with the GFRU-CTV, while reducing the GFRU-CTV by 25%. The new CTV was highly reproducible, with a mean DSC of 0.82 (range, 0.81-0.83). CONCLUSIONS: This study contributes to the optimization of CTV definition in postprostatectomy sEBRT by using the pattern of LR detected on PSMA PET/CT. The PERYTON-CTV is highly reproducible across the participating centers and ensures coverage of 96% LRs while reducing the GFRU-CTV by 25%.


Subject(s)
Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Retrospective Studies , Reproducibility of Results , Prostate/diagnostic imaging , Neoplasm Recurrence, Local/diagnostic imaging , Neoplasm Recurrence, Local/radiotherapy , Neoplasm Recurrence, Local/surgery , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/surgery , Prostatectomy/methods , Gallium Radioisotopes , Prostate-Specific Antigen
10.
Nat Commun ; 14(1): 7616, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37993455

ABSTRACT

Long noncoding RNAs (lncRNAs) represent a multidimensional class of regulatory molecules that are involved in many aspects of brain function. Emerging evidence indicates that lncRNAs are localized to the synapse; however, a direct role for their activity in this subcellular compartment in memory formation has yet to be demonstrated. Using lncRNA capture-seq, we identified a specific set of lncRNAs that accumulate in the synaptic compartment within the infralimbic prefrontal cortex of adult male C57/Bl6 mice. Among these was a splice variant related to the stress-associated lncRNA, Gas5. RNA immunoprecipitation followed by mass spectrometry and single-molecule imaging revealed that this Gas5 isoform, in association with the RNA binding proteins G3BP2 and CAPRIN1, regulates the activity-dependent trafficking and clustering of RNA granules. In addition, we found that cell-type-specific, activity-dependent, and synapse-specific knockdown of the Gas5 variant led to impaired fear extinction memory. These findings identify a new mechanism of fear extinction that involves the dynamic interaction between local lncRNA activity and RNA condensates in the synaptic compartment.


Subject(s)
Fear , RNA, Long Noncoding , Mice , Male , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Extinction, Psychological , Prefrontal Cortex/metabolism , Synapses/metabolism
11.
J Neurosci ; 43(43): 7084-7100, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37669863

ABSTRACT

The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.


Subject(s)
Fear , RNA, Long Noncoding , Animals , Male , Mice , Extinction, Psychological , Fear/physiology , Learning/physiology , RNA, Long Noncoding/metabolism , Synapses/metabolism
12.
Medicina (Kaunas) ; 59(8)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37629789

ABSTRACT

Background and Objectives: The demand for permanent pacemaker (PPM) implantation for extremely old patients is increasing. Prior to implanting PPMs, life expectancy evaluation is essential but difficult. We aimed to develop and validate a scoring system for all-cause mortality risk stratification prior to PPM implantation in patients aged ≥80. Materials and Methods: A total of 210 patients aged ≥80 who received PPM implantation were included. Multivariable analysis was performed to assess the effects of different variables on all-cause mortality in a derivation cohort (n = 100). We developed the MELODY score for stratifying all-cause mortality prior to PPM implantation and tested the scoring system in a validation cohort (n = 102). Results: After 4.0 ± 2.7 years of follow-up, 54 patients (54%) had died. The 0.5-, 1- and 2-year all-cause mortality rates were 7%, 10% and 24%, respectively. The MELODY score based on body mass index <21 kg/m2 (HR: 2.21, 95% CI: 1.06-4.61), estimated glomerular filtration rate <30 mL/min/1.73 m2 (3.35, 1.77-6.35), length of hospitalization before PPM implantation >7 days (1.87, 1.02-3.43) and dyspnea as the major presenting symptom (1.90, 1.03-3.50) successfully distinguished patients at high risk of mortality. Patients with MELODY scores ≥3 had a higher risk of mortality compared to those with MELODY scores <3 (8.49, 4.24-17.00). The areas under the receiver operating characteristic curves in predicting 0.5, 1 and 2 years mortality rates were 0.86, 0.81 and 0.74, respectively. The predictive value of the model was confirmed in a validation cohort. Conclusions: The novel scoring system is a simple and effective tool for all-cause mortality risk stratification prior to PPM implantation in patients aged ≥80.


Subject(s)
Octogenarians , Pacemaker, Artificial , Aged, 80 and over , Humans , Body Mass Index , Risk Factors , Risk Assessment
13.
Radiother Oncol ; 188: 109856, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37597803

ABSTRACT

PURPOSE: To assess the residual geometrical errors (dr) and their impact on the clinical target volumes (CTV) dose coverage for head and neck cancer (HNC) proton therapy patients. METHODS: We analysed 28 HNC patients treated with 70 Gy (RBE) and 54.25 Gy (RBE) to the therapeutic CTV70 and prophylactic CTV54.25, respectively. Daily cone beam CTs were converted to high quality synthetic CTs (sCTs). The CTVs from the nominal CT were propagated to the corresponding sCTs using a hybrid deformable image registration (propagated CTVs) in RayStation 11B. For 11 patients, all propagated CTVs were reviewed by our HNC radiation oncologist (physician corrected CTVs). The residual geometrical error dr was quantified as a function of the daily CTVs volume overlap with the nominal plan CTV. The errors dr(propagated CTVs) and dr(physician corrected CTVs) and the difference in dice similarity coefficients (ΔDSC) were determined. Using clinical plans, dose coverage and the tumor control probability (TCP) for the nominal, accumulated and voxel-wise minimum scenarios were determined. RESULTS: The difference in the residual geometrical error dr (propagated CTVs - physician corrected CTVs) and mean DSC (|ΔDSC|mean) were minor: Δdr(CTV70) = 0.16 mm, Δdr(CTV54.25) = 0.26 mm, |ΔDSC|mean < 0.9%. For all 28 patients, dr(CTV70) = 1.91 mm and dr(CTV54.25) = 1.90 mm. However, CTV54.25 above and below the cricoid cartilage differed substantially (1.00 mm c.f. 3.93 mm). The CTV54.25 coverage below the cricoid was then almost always lower, although the TCP of the accumulated dose was higher than the TCP of the voxel-wise minimum dose. CONCLUSIONS: Setup uncertainty setting of 2 mm is possible. The feasibility of using propagated CTVs for error determination is demonstrated.

14.
Neurobiol Learn Mem ; 203: 107777, 2023 09.
Article in English | MEDLINE | ID: mdl-37257557

ABSTRACT

Circular RNAs (circRNAs) comprise a novel class of regulatory RNAs that are abundant in the brain, particularly within synapses. They are highly stable, dynamically regulated, and display a range of functions, including serving as decoys for microRNAs and proteins and, in some cases, circRNAs also undergo translation. Early work in animal models revealed an association between circRNAs and neurodegenerative and neuropsychiatric disorders; however, little is known about the link between circRNA function and memory. To address this, we examined circRNA in synaptosomes derived from the medial prefrontal cortex of fear extinction-trained male C57BL/6J mice and found 12,837 circRNAs that were enriched at the synapse, including cerebellar degeneration-related protein 1 antisense RNA (Cdr1as). Targeted knockdown of Cdr1as in the neural processes of the infralimbic cortex led to impaired fear extinction memory. These findings highlight the involvement of localised circRNA activity at the synapse in memory formation.


Subject(s)
MicroRNAs , RNA, Circular , Mice , Animals , Male , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Antisense , Extinction, Psychological , Fear , Mice, Inbred C57BL , MicroRNAs/metabolism
15.
Health Care Manag Sci ; 26(3): 477-500, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37199873

ABSTRACT

During the COVID-19 pandemic, there has been considerable research on how regional and country-level forecasting can be used to anticipate required hospital resources. We add to and build on this work by focusing on ward-level forecasting and planning tools for hospital staff during the pandemic. We present an assessment, validation, and deployment of a working prototype forecasting tool used within a modified Traffic Control Bundling (TCB) protocol for resource planning during the pandemic. We compare statistical and machine learning forecasting methods and their accuracy at one of the largest hospitals (Vancouver General Hospital) in Canada against a medium-sized hospital (St. Paul's Hospital) in Vancouver, Canada through the first three waves of the COVID-19 pandemic in the province of British Columbia. Our results confirm that traditional statistical and machine learning (ML) forecasting methods can provide valuable ward-level forecasting to aid in decision-making for pandemic resource planning. Using point forecasts with upper 95% prediction intervals, such forecasting methods would have provided better accuracy in anticipating required beds on COVID-19 hospital units than ward-level capacity decisions made by hospital staff. We have integrated our methodology into a publicly available online tool that operationalizes ward-level forecasting to aid with capacity planning decisions. Importantly, hospital staff can use this tool to translate forecasts into better patient care, less burnout, and improved planning for all hospital resources during pandemics.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Pandemics , Hospitals , Forecasting
16.
Gen Physiol Biophys ; 42(2): 159-167, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36896945

ABSTRACT

In this study, we have screened genes involved in myocardial hypertrophy (MH) using a mice model for compensatory stress overload (transverse aortic constriction, TAC) and bioinformatics. Microarrays were downloaded, and according to the Venn diagram, three groups of data intersections were obtained. Gene function was analyzed by Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), whereas protein-protein interactions (PPI) were analyzed using the STRING database. A mouse aortic arch ligation model was established to verify and screen the expression of hub genes. A total of 53 (DEGs) and 32 PPI genes were screened out. GO analysis showed DEGs mainly involved in cytokine and peptide inhibitor activity. KEGG analysis focused on ECM receptor interaction and osteoclast differentiation. Expedia co-expression gene network analysis showed that Serpina3n, Cdkn1a, Fos, Col5a2, Fn1 and Timp1 participated in the occurrence and development of MH. RT-qPCR verified that all the other 9 hub genes except Lox were highly expressed in TAC mice. This study lays a foundation for further study on the molecular mechanism of MH and for screening of molecular markers.


Subject(s)
Gene Expression Profiling , Gene Regulatory Networks , Animals , Mice , Biomarkers , Computational Biology
17.
Nutrients ; 15(3)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36771356

ABSTRACT

In critically ill patients, risk scores are used; however, they do not provide information for nutritional intervention. This study combined the levels of phenylalanine and leucine amino acids (PLA) to improve 30-day mortality prediction in intensive care unit (ICU) patients and to see whether PLA could help interpret the nutritional phases of critical illness. We recruited 676 patients with APACHE II scores ≥ 15 or intubated due to respiratory failure in ICUs, including 537 and 139 patients in the initiation and validation (multicenter) cohorts, respectively. In the initiation cohort, phenylalanine ≥ 88.5 µM (indicating metabolic disturbance) and leucine < 68.9 µM (indicating malnutrition) were associated with higher mortality rate. Based on different levels of phenylalanine and leucine, we developed PLA scores. In different models of multivariable analyses, PLA scores predicted 30-day mortality independent of traditional risk scores (p < 0.001). PLA scores were then classified into low, intermediate, high, and very-high risk categories with observed mortality rates of 9.0%, 23.8%, 45.6%, and 81.8%, respectively. These findings were validated in the multicenter cohort. PLA scores predicted 30-day mortality better than APACHE II and NUTRIC scores and provide a basis for future studies to determine whether PLA-guided nutritional intervention improves the outcomes of patients in ICUs.


Subject(s)
Critical Illness , Nutritional Status , Humans , Leucine , Phenylalanine , Risk Factors , Polyesters
18.
Eur J Med Res ; 28(1): 21, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36631882

ABSTRACT

BACKGROUND: We established 1-h and 1-day survival models after terminal extubation to optimize ventilator use and achieve a balance between critical care for COVID-19 and hospice medicine. METHODS: Data were obtained from patients with end-of-life status at terminal extubation from 2015 to 2020. The associations between APACHE II scores and parameters with survival time were analyzed. Parameters with a p-value ≤ 0.2 in univariate analysis were included in multivariate models. Cox proportional hazards regression analysis was used for the multivariate analysis of survival time at 1 h and 1 day. RESULTS: Of the 140 enrolled patients, 76 (54.3%) died within 1 h and 35 (25%) survived beyond 24 h. No spontaneous breathing trial (SBT) within the past 24 h, minute ventilation (MV) ≥ 12 L/min, and APACHE II score ≥ 25 were associated with shorter survival in the 1 h regression model. Lower MV, SpO2 ≥ 96% and SBT were related to longer survival in the 1-day model. Hospice medications did not influence survival time. CONCLUSION: An APACHE II score of ≥ 25 at 1 h and SpO2 ≥ 96% at 1 day were strong predictors of disposition of patients to intensivists. These factors can help to objectively tailor pathways for post-extubation transition and rapidly allocate intensive care unit resources without sacrificing the quality of palliative care in the era of COVID-19. Trial registration They study was retrospectively registered. IRB No.: 202101929B0.


Subject(s)
COVID-19 , Hospices , Humans , Airway Extubation , Pandemics , COVID-19/epidemiology , Intensive Care Units , Critical Care , Respiration, Artificial
19.
Circulation ; 147(4): 284-295, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36335517

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 inhibitors have been demonstrated to promote reverse cardiac remodeling in people with diabetes or heart failure. Although it has been theorized that sodium-glucose cotransporter 2 inhibitors might afford similar benefits in people without diabetes or prevalent heart failure, this has not been evaluated. We sought to determine whether sodium-glucose cotransporter 2 inhibition with empagliflozin leads to a decrease in left ventricular (LV) mass in people without type 2 diabetes or significant heart failure. METHODS: Between April 2021 and January 2022, 169 individuals, 40 to 80 years of age, without diabetes but with risk factors for adverse cardiac remodeling were randomly assigned to empagliflozin (10 mg/d; n=85) or placebo (n=84) for 6 months. The primary outcome was the 6-month change in LV mass indexed (LVMi) to baseline body surface area as measured by cardiac magnetic resonance imaging. Other measures included 6-month changes in LV end-diastolic and LV end-systolic volumes indexed to baseline body surface area and LV ejection fraction. RESULTS: Among the 169 participants (141 men [83%]; mean age, 59.3±10.5 years), baseline LVMi was 63.2±17.9 g/m2 and 63.8±14.0 g/m2 for the empagliflozin- and placebo-assigned groups, respectively. The difference (95% CI) in LVMi at 6 months in the empagliflozin group versus placebo group adjusted for baseline LVMi was -0.30 g/m2 (-2.1 to 1.5 g/m2; P=0.74). Median baseline (interquartile range) NT-proBNP (N-terminal-pro B-type natriuretic peptide) was 51 pg/mL (20-105 pg/mL) and 55 pg/mL (21-132 pg/mL) for the empagliflozin- and placebo-assigned groups, respectively. The 6-month treatment effect of empagliflozin versus placebo (95% CI) on blood pressure and NT-proBNP (adjusted for baseline values) were -1.3 mm Hg (-5.2 to 2.6 mm Hg; P=0.52), 0.69 mm Hg (-1.9 to 3.3 mm Hg; P=0.60), and -6.1 pg/mL (-37.0 to 24.8 pg/mL; P=0.70) for systolic blood pressure, diastolic blood pressure, and NT-proBNP, respectively. No clinically meaningful between-group differences in LV volumes (diastolic and systolic indexed to baseline body surface area) or ejection fraction were observed. No difference in adverse events was noted between the groups. CONCLUSIONS: Among people with neither diabetes nor significant heart failure but with risk factors for adverse cardiac remodeling, sodium-glucose cotransporter 2 inhibition with empagliflozin did not result in a meaningful reduction in LVMi after 6 months. REGISTRATION: URL: https://www. CLINICALTRIALS: gov; Unique identifier: NCT04461041.


Subject(s)
Diabetes Mellitus, Type 2 , Heart Failure , Aged , Humans , Male , Middle Aged , Benzhydryl Compounds/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Glucose , Sodium , Stroke Volume , Ventricular Remodeling , Female
20.
Res Diagn Interv Imaging ; 7: 100033, 2023 Sep.
Article in English | MEDLINE | ID: mdl-39077151

ABSTRACT

Background and purpose: Cerebral microbleeds (CMBs) and fluid-attenuated-inversion recovery (FLAIR) hyperintensities on brain MRI scans after radiotherapy (RT) are considered markers for microvascular damage and related cognitive changes. However, the spatial distribution using existing scoring systems as well as colocation of these imaging biomarkers remain unclear, hampering clinical interpretation. This study aims to elucidate the distribution and colocation of these markers in patients with lower grade glioma (LGG). Materials and methods: CMBs were spatially classified on retrospective 1.5 T susceptibility weighted MRI scans according to the existing Microbleed Anatomical Rating Scale (MARS) and were additionally scored for being located in hippocampus, amygdala, cortex, white matter (WM), grey matter (GM), WM/GM junction and for their spatial relation to FLAIR hyperintensities. Scoring was performed for whole, ipsilateral and contralateral cerebrum (with respect to tumour bulk). Results: Fifty-one scans were included of which 28 had at least one CMB. The majority of CMBs were localized in the lobar area and in deep and periventricular white matter (DPWM) - generally in WM. Only few CMBs were found in GM. In scans obtained up to 7 years after RT completion the majority of CMBs were not colocalized with FLAIR hyperintensities. Conclusion: CMBs and FLAIR hyperintensities appear to be separate imaging biomarkers for radiation therapy induced microvascular damage, as they are not colocalized in patients with LGG, especially not early on after completion of RT.

SELECTION OF CITATIONS
SEARCH DETAIL
...