Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 149(4): 044304, 2018 Jul 28.
Article in English | MEDLINE | ID: mdl-30068192

ABSTRACT

Using the Z-scan technique with 532 nm 19 ps laser pulses separated by two time intervals τp-p's (0.1 s and 1.0 s) sandwiching the mass diffusion time constant of the C49H43ClO6 + 1,2 dichloroethane solution, we investigate short-pulse-induced solute migration in the sample by measuring its transmittance change with τp-p variation. Preparing the sample at two concentrations, we find that τp-p reduction, from 1.0 s to 0.1 s, increases its transmittance when input pulse energy ε1 exceeds a threshold εT, which is lower for the dilute solution than the concentrated one. At two ε1's above εT for the dilute solution, τp-p-reduction-induced transmittance increase in the dilute solution, as compared to that in the concentrated solution, is more at the lower ε1 and less at the higher ε1. This differs from continuous-wave-driven thermal diffusion which always causes a larger transmittance increase in the concentrated solution by inducing a larger temperature gradient. From this study, we predict that solute migration induced by short pulses at 1064 nm is one of the undesired heating effects occurring when this solution is used to simultaneously Q-switch and mode-lock Nd:YAG lasers.

2.
Phys Chem Chem Phys ; 17(38): 24738-47, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26246122

ABSTRACT

By chopping 820 nm 18 femtosecond (fs)-laser pulses, continuously generated by a self-mode locked Ti:Al2O3 laser at 82 MHz, into trains with both train-width and train-to-train separation considerably longer than the thermal diffusivity time constant τth of CS2, we conducted Z-scan measurements on it at various times relative to the leading pulse of each train (T's). As a result, we observed negative nonlinear refraction strengthening with T within τth and gradually stabilizing with T exceeding τth. We quantitatively explain the experimental results in terms of the thermal lensing effect. In particular, we attribute the heat generation to non-radiative relaxation of libration excited by individual 18 fs-pulses via stimulated Raman scattering. In contrast to the commonly held view of multi-photon excitation, we propose and verify a new heat-generating mechanism for the thermal lensing effect in CS2.

3.
Sci Rep ; 4: 5983, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-25099864

ABSTRACT

Highly efficient hot electron transport represents one of the most important properties required for applications in photovoltaic devices. Whereas the fabrication of efficient hot electron capture and lost-cost devices remains a technological challenge, regulating the energy level of acceptor-donor system through the incorporation of foreign ions using the solution-processed technique is one of the most promising strategies to overcome this obstacle. Here we present a versatile acceptor-donor system by incorporating MoO3:Eu nanophosphors, which reduces both the 'excess' energy offset between the conduction band of acceptor and the lowest unoccupied molecular orbital of donor, and that between the valence band and highest occupied molecular orbital. Strikingly, the hot electron transfer time has been shortened. This work demonstrates that suitable energy level alignment can be tuned to gain the higher hot electron/hole transport efficiency in a simple approach without the need for complicated architectures. This work builds up the foundation of engineering building blocks for third-generation solar cells.

4.
ACS Appl Mater Interfaces ; 6(15): 12798-807, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-24967836

ABSTRACT

In this work, a core-shell nanostructure of samarium phosphates encapsulated into a Eu(3+)-doped silica shell has been successfully fabricated, which has been confirmed by X-ray diffraction, transmission electron microscopy (TEM), and high-resolution TEM. Moreover, we report the energy transfer process from the Sm(3+) to emitters Eu(3+) that widens the light absorption range of the hybrid solar cells (HSCs) and the strong enhancement of the electron-transport of TiO2/poly(3-hexylthiophene) (P3HT) bulk heterojunction (BHJ) HSCs by introducing the unique core-shell nanoarchitecture. Furthermore, by applying femtosecond transient absorption spectroscopy, we successfully obtain the electron transport lifetimes of BHJ systems with or without incorporating the core-shell nanophosphors (NPs). Concrete evidence has been provided that the doping of core-shell NPs improves the efficiency of electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 16.7 ps, i.e., more than 44% faster than pure TiO2 acceptor. Consequently, a notable power conversion efficiency of 3.30% for SmPO4@Eu(3+):SiO2 blended TiO2/P3HT HSCs is achieved at 5 wt % as compared to 1.98% of pure TiO2/P3HT HSCs. This work indicates that the core-shell NPs can efficiently broaden the absorption region, facilitate electron-transport of BHJ, and enhance photovoltaic performance of inorganic/organic HSCs.

5.
Opt Lett ; 37(12): 2340-2, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22739901

ABSTRACT

The transmittive and reflective Z-scan technique is used with a 10 Hz, frequency doubled, Q-switched, and mode-locked Nd:YAG laser to verify that the reflectivity of the super-resolution near-field structure of an SiN/Sb/SiN thin film increases as incident intensity decreases. This intensity-dependent reflection, called nonlinear reflection, reflects a TEM(00) mode laser beam more strongly at its periphery than at its center and so shrinks the transmitted laser beam. The observed nonlinear reflection is attributed to laser-induced change of carrier densities in Sb, to justify quantitatively the experimental results.

6.
Opt Express ; 18(22): 22637-50, 2010 Oct 25.
Article in English | MEDLINE | ID: mdl-21164604

ABSTRACT

Using the Z-scan technique with 532 nm 16 picosecond laser pulses, we observe reverse saturable absorption and positive nonlinear refraction of toluene solutions of both C(60) and C(70). By deducting the positive Kerr nonlinear refraction of the solvent, we notice that the solute molecules contribute to nonlinear refraction of opposite signs: positive for C(60) and negative for C(70). Attributing nonlinear absorption and refraction of both solutes to cascading one-photon excitations, we illustrate that they satisfy the Kramers-Kronig relation. Accordingly, we attest the signs and magnitudes of nonlinear refraction for both solutes at 532 nm by Kramers-Kronig transform of the corresponding nonlinear absorption spectra.

7.
Opt Express ; 18(26): 27387-403, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21197016

ABSTRACT

Nonlinear absorption of a newly synthesized organic inner salt Ge-150 dissolved in four different solvents (DMF, DMSO, acetonitrile and acetone) is investigated by the Z-scan technique with both nanosecond and picosecond pulses. When pulse energy surpasses a threshold and pulse-to-pulse separation is shorter than a characteristic time, all the four solutions show absorption weakening induced by cross-pulse effects in the picosecond regime. However, only two of them (Ge-150 dissolved in DMF and DMSO) show this weakening in the nanosecond regime. By conducting a simple verification experiment, we verify this absorption weakening is induced by solute damage related to solvent effect rather than solute migration. A simple theoretical model is proposed to interpret the experimental phenomenon.


Subject(s)
Models, Chemical , Nephelometry and Turbidimetry/methods , Organic Chemicals/chemistry , Salts/chemistry , Solvents/chemistry , Computer Simulation
8.
Opt Express ; 17(22): 20457-64, 2009 Oct 26.
Article in English | MEDLINE | ID: mdl-19997274

ABSTRACT

A new structure to be used as a tunable unidirectional surface plasmon source is introduced. The structure is composed of two silver films, with a nanoslit fabricated in the top Ag film and lying below is a movable Ag film. The field distribution of the structure is investigated by using the finite-difference time-domain(FDTD) method. It is found that the surface plasmon polariton intensity and the splitting ratio change periodically as the bottom film is moved, which is interpreted in terms of surface plasmon polaritons interference in two Fabry-Perot(F-P) cavities. The period obtained by the FDTD agrees well with the F-P interferometer model. The surface plasmon polaritons can be unidirectionally excited with a large intensity splitting ratio.


Subject(s)
Interferometry/instrumentation , Nanotechnology/instrumentation , Surface Plasmon Resonance/instrumentation , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
9.
J Chem Phys ; 130(2): 024511, 2009 Jan 14.
Article in English | MEDLINE | ID: mdl-19154042

ABSTRACT

Using the Z-scan technique, we find that migration of chloroaluminum phthalocyanine in liquid ethanol can be induced by the absorption of a 19 ps laser pulse with energy exceeding a threshold but not by that of a 2.8 ns pulse depositing more energy at the solute molecules. Considering each solute molecule as an oscillator confined within a potential well, we explain, in accordance with the five-energy-band model, that solute molecules excited by a 19 ps pulse retain more translational excess energy to overcome the potential well barrier compared with those excited by a 2.8 ns pulse of equal energy. Therefore, they are more likely to migrate out of the laser beam center, weakening the solution's absorption that we detect in the Z-scan measurements. Furthermore, we theoretically infer that the 19 ps pulse-induced solute migration tends to be nonquasistatic and experimentally verify that it cannot be attributed to the Soret effect, a quasistatic process.

10.
Opt Express ; 16(9): 6251-9, 2008 Apr 28.
Article in English | MEDLINE | ID: mdl-18545328

ABSTRACT

A nonlinear imaging technique with phase object, which can deduce nonlinear absorption and refraction coefficients by single laser-shot exposure, is expanded to a time-resolved pump-probe system by introducing a pump beam with a variable temporal delay. This new system, in which both degenerate and nondegenerate pump and probe beams in any polarization states can be used, can simultaneously measure dynamic nonlinear absorption and refraction conveniently. In addition, the sensitivity of this new pump-probe system is more than twice that of the Z-scan-based system. The semiconductor ZnSe is used to demonstrate this system.


Subject(s)
Nonlinear Dynamics , Optics and Photonics , Absorption , Signal Processing, Computer-Assisted , Time Factors
11.
Opt Express ; 15(4): 1718-31, 2007 Feb 19.
Article in English | MEDLINE | ID: mdl-19532409

ABSTRACT

Using the Z-scan technique, we studied the nonlinear absorption and refraction behaviors of a dilute toluene solution of a silicon naphthalocyanine (Si(OSi(n-hexyl)(3))(2), SiNc) at 532 nanometer with both a 2.8-nanosecond pulse and a 21-nanosecond (HW1/eM) pulse train containing 11 18-picosecond pulses 7 nanosecond apart. A thermal acoustic model and its steady-state approximation account for the heat generated by the nonradiative relaxations subsequent to the absorption. We found that when the steady-state approximation satisfactorily explained the results obtained with a 21-nanosecond pulse train, only the thermal-acoustic model fit the 2.8-nanosecond experimental results, which supports the approximation criterion established by Kovsh et al.

12.
Opt Express ; 15(11): 7006-18, 2007 May 28.
Article in English | MEDLINE | ID: mdl-19547018

ABSTRACT

We present nonlinear refraction results for liquids methanol and acetic acid obtained with the Z-scan technique and 28 femtosecond (fs) 800 nm laser pulses. In contrast to the positive lensing effect obtained previously with picosecond and nanosecond laser pulses, a negative lensing effect is observed. The associated mechanism features the third-order polarization arising from the nonlinear response of the molecular skeletal motion that is driven into resonance through its electrostatic coupling to the valence electron cloud distorted by the fs laser field.

13.
J Chem Phys ; 120(17): 8031-8, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15267722

ABSTRACT

Transition from reverse-saturable absorption to saturable absorption of the chloroaluminum phthalocyanine solution excited by a giant laser pulse is ascribed not just to the saturation of excited state absorption, but also to the outward migration of the solute molecules at the laser beam center. While the saturation of excited state absorption occurs within a single picosecond laser pulse, the beam center population decrease is sustained much longer than the pulse duration. We distinguish these two mechanisms with the Z-scan technique, utilizing picosecond pulses with pulse-to-pulse separations ranging from 0.1 to 5.0 s.

SELECTION OF CITATIONS
SEARCH DETAIL
...