Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Eng Online ; 18(1): 92, 2019 Sep 04.
Article in English | MEDLINE | ID: mdl-31484584

ABSTRACT

BACKGROUND: Sleep problem or disturbance often exists in pain or neurological/psychiatric diseases. However, sleep scoring is a time-consuming tedious labor. Very few studies discuss the 5-stage (wake/NREM1/NREM2/transition sleep/REM) automatic fine analysis of wake-sleep stages in rodent models. The present study aimed to develop and validate an automatic rule-based classification of 5-stage wake-sleep pattern in acid-induced widespread hyperalgesia model of the rat. RESULTS: The overall agreement between two experts' consensus and automatic scoring in the 5-stage and 3-stage analyses were 92.32% (κ = 0.88) and 94.97% (κ = 0.91), respectively. Standard deviation of the accuracy among all rats was only 2.93%. Both frontal-occipital EEG and parietal EEG data showed comparable accuracies. The results demonstrated the performance of the proposed method with high accuracy and reliability. Subtle changes exhibited in the 5-stage wake-sleep analysis but not in the 3-stage analysis during hyperalgesia development of the acid-induced pain model. Compared with existing methods, our method can automatically classify vigilance states into 5-stage or 3-stage wake-sleep pattern with a promising high agreement with sleep experts. CONCLUSIONS: In this study, we have performed and validated a reliable automated sleep scoring system in rats. The classification algorithm is less computation power, a high robustness, and consistency of results. The algorithm can be implanted into a versatile wireless portable monitoring system for real-time analysis in the future.


Subject(s)
Signal Processing, Computer-Assisted , Sleep Stages , Animals , Automation , Electroencephalography , Hyperalgesia/physiopathology , Polysomnography , Rats , Wakefulness
2.
Biomed Eng Online ; 16(1): 128, 2017 Nov 13.
Article in English | MEDLINE | ID: mdl-29132359

ABSTRACT

BACKGROUND: Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. METHODS: The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. RESULTS: The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. CONCLUSIONS: Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.


Subject(s)
Alpha Rhythm , Memory/physiology , Neurofeedback/instrumentation , Wireless Technology , Adult , Cognition/physiology , Female , Healthy Volunteers , Humans , Male , Signal Processing, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...