Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
ChemSusChem ; 16(12): e202300259, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-36869690

ABSTRACT

Zinc-ion batteries, in which zinc ions and protons do intercalation and de-intercalation during battery cycling with various proposed mechanisms under debate, have been studied. Recently, electrolytic zinc-manganese batteries, exhibiting the pure dissolution-deposition behavior with a large charge capacity, have been accomplished through using electrolytes with Lewis acid. However, the complicated chemical environment and mixed products hinder the investigation though it is crucial to understand the detailed mechanism. Here, cyclic voltammetry coupled electrochemical quartz crystal microbalance (EQCM) and ultraviolet-visible spectrophotometry (UV-Vis) are respectively, for the very first time, used to study the transition from zinc-ion batteries to zinc electrolytic batteries by the continuous addition of acetate ions. These complementary techniques operando trace the mass and the composition evolution. The observed formation and dissolution of zinc hydroxide sulfate (ZHS) and manganese oxides evince the effect of acetate ions on zinc-manganese batteries from an alternative perspective. Both the amount of acetate and the pH value have large impacts on the capacity and Coulombic efficiency of the MnO2 electrode, and thus they should be optimized when constructing a full zinc-manganese battery with high rate capability and reversibility.


Subject(s)
Manganese , Zinc , Manganese Compounds , Quartz Crystal Microbalance Techniques , Oxides , Spectrophotometry, Ultraviolet , Acetates
2.
Nanomaterials (Basel) ; 12(21)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36364565

ABSTRACT

Toxic substance usage remains one of the major concerns that must be addressed toward the commercialization of perovskite photovoltaics. Herein, we report a highly efficient perovskite solar module (>13%) fabricated via a wet process that uses a unique aqueous Pb(NO3)2 precursor, eliminating the use of toxic organic solvents during perovskite film preparation. In addition, we demonstrate a unique pattern in a monolithically interconnected module structure to check the uniformity of perovskite film and the quality of laser scribing. Finally, we highlight that this aqueous Pb(NO3)2 precursor protocol could achieve an enormous cost reduction over conventional PbI2 organic solutions whether in the laboratory research stage or at mass production scale, strengthening the core competitiveness of perovskite solar cells in the Darwinian ocean of photovoltaic technologies.

3.
ACS Appl Mater Interfaces ; 13(20): 23513-23522, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33840194

ABSTRACT

Structural engineering of the light-harvesting dyes employed in DSSCs (dye-sensitized solar cells) with a systematic choice of the electron-donating and -accepting groups as well as the π-bridge allows the (photo)physical properties of dyes to match the criteria needed for improving the DSSC efficiency. Herein, we report an effective approach of molecular engineering of DSSC sensitizers, aiming to gain insights on the configurational impact of the fluorenyl unit on the optoelectronic properties and photovoltaic performance of DSSCs. Five new organic dyes (GZ116, GZ126, GZ129, MA1116, and MA1118) with a D-A-π-A framework integrated with a fluorenyl moiety were designed and synthesized for DSSCs. The fluorenyl unit is configured as part of the π-spacer for the GZ series, whereas it connected on the electron-deficient quinoxaline motif for the MA series. The devices fabricated from the MA1116 sensitizer produced the best performance under standard AM 1.5 G solar conditions as well as dim-light (300-6000 lx) illumination. The devices fabricated from MA1116 displayed a PCE of 8.68% (Jsc = 15.00 mA cm-2, Voc = 0.82 V, and FF = 0.71) under 1 sun and 26.81% (Jsc = 0.93 mA cm-2, Voc = 0.68 V, and FF = 0.76) under 6000 lx illumination. The device efficiency based on dye MA1116 under 1 sun outperformed that based on the standard N719 dye, whereas a comparable performance between devices based on MA1116 and N719 was achieved under dim-light conditions. A combination of enhancing the charge separation, suppressing dye aggregation, and providing better insulation that prevents the oxidized redox mediator from approaching the TiO2 surface all contribute to the superior performance of DSSCs fabricated based on these light-harvesting dyes. The judicious integration of the fluorenyl unit in a D-A-π-A-based DSSC would be a promising strategy to boost the device performance.

4.
Angew Chem Int Ed Engl ; 60(9): 4886-4893, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33215788

ABSTRACT

A series of new double fence porphyrin dyes bJS1-bJS3, with eight long alkoxyl chains attached to four ß-phenyl groups, have been designed and synthesized. The single fence meso-substituted counterparts mJS1-mJS3 were also prepared as reference dyes. Dyes bJS1-bJS3 and mJS1-mJS3 exhibit power conversion efficiencies of 8.03-10.69 % and 2.33-6.69 %, respectively. Based on photovoltaic studies, the remarkable cell performance of double fence porphyrin sensitizers can be attributed to reduced dye aggregation and a decreased charge-recombination rate. Notably, porphyrins bJS2 and bJS3 exhibit better efficiency than the benchmark YD2-o-C8 (9.83 % in this work), demonstrating that the double fence structure is a promising design strategy for efficient porphyrin sensitizers in high-performance DSSCs.

5.
RSC Adv ; 11(35): 21560-21566, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-35478777

ABSTRACT

Electrolytes for dye-sensitized solar cells remain a challenge for large-scale production and commercialization, hindering the wide application of solar cells. We have developed two new electrolyte-based deep eutectic solvents using a mixture of choline chloride with urea and with ethylene glycol for dye-sensitized solar cells. The prominent features of the two deep eutectic solvent electrolytes are simple preparation for large-scale production with inexpensive, available, and nontoxic starting materials and biodegradability. The solar cell devices proceeded in a safe manner as the two deep eutectic solvents afforded low-cost technology and comparative conversion efficiency to a popular ionic liquid, namely 1-ethyl-3-methylimidazolium tetracyanoborate. Results showed that devices with choline chloride and urea electrolyte exhibited improved open circuit voltage values (V OC), while the ones with choline chloride and ethylene glycol showed an increase in the short circuit current (I sc). Characterization of the devices by electrochemical impedance spectroscopy helped explain the effects of their molecular structures on the enhancement of either V OC or I sc values. These new solvents expand the electrolyte choices for designing dye-sensitized solar cells, especially for the purpose of using low-cost and eco-friendly materials for massive production.

6.
J Am Chem Soc ; 142(47): 19980-19991, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33170007

ABSTRACT

The use of molecular modulators to reduce the defect density at the surface and grain boundaries of perovskite materials has been demonstrated to be an effective approach to enhance the photovoltaic performance and device stability of perovskite solar cells. Herein, we employ crown ethers to modulate perovskite films, affording passivation of undercoordinated surface defects. This interaction has been elucidated by solid-state nuclear magnetic resonance and density functional theory calculations. The crown ether hosts induce the formation of host-guest complexes on the surface of the perovskite films, which reduces the concentration of surface electronic defects and suppresses nonradiative recombination by 40%, while minimizing moisture permeation. As a result, we achieved substantially improved photovoltaic performance with power conversion efficiencies exceeding 23%, accompanied by enhanced stability under ambient and operational conditions. This work opens a new avenue to improve the performance and stability of perovskite-based optoelectronic devices through supramolecular chemistry.

7.
Chem Commun (Camb) ; 56(17): 2626-2629, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32016254

ABSTRACT

This work demonstrates a general and effective approach to activate inert polymer chains for further reactions through electrochemically driven radical generation and radical transfer reactions. The generated radical-containing polymer chains show capacity for further polymer reactions and preparation of polymer hybrids.

8.
ACS Appl Mater Interfaces ; 12(5): 5812-5819, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31942803

ABSTRACT

Cu(I)/(II) complex redox couples in dye-sensitized solar cell (DSSC) are of particular interest because of their low reorganization energy between Cu(I) and Cu(II), which minimizes the potential loss during sensitizer regeneration, thus allowing the open-circuit voltage of the device to go over 1.0 V. However, Cu(I)/(II)-based redox couples are reported to coordinate with 4-tert-butylpyridine (TBP), which is a standard additive in the electrolyte, and this is believed to account for the poor durability of a Cu(I)/(II)-based DSSCs. Despite TBP coordination on Cu(I)/(II) complexes are confirmed in the literature, its detailed mechanism is yet to be directly proven. In addition, how TBP coordination with Cu(I)/(II) complexes affects the stability of the device is never reported. Here, we choose bis(2,9-dimethyl-1,10-phenanthroline) copper(I)/(II) ([Cu(dmp)22+/+]) as the modeling redox couple to investigate its interaction with TBP. It is found that [Cu(dmp)2+] is resistive to TBP coordination but could form three new TBP-coordinated compounds. Moreover, it is also confirmed their electrochemical activity on Pt catalyst and mass transfer capability are both demoted significantly. As a result, serious fill factor loss is observed on the stability trail while short-circuit current density and open-circuit voltage are relatively unaffected. This unique degradation pattern may resemble a feature of Cu(I)/(II)-based redox couple after TBP poisoning.

9.
ACS Omega ; 4(4): 7706-7710, 2019 Apr 30.
Article in English | MEDLINE | ID: mdl-31459860

ABSTRACT

This paper reports a new approach to realize direct selective electroless deposition (ELD) without the requirement of photolithography. This method involves sequential silane-compound modifications in which the first modification creates a hydrophobic surface on the TiO2-coated glass using a fluorine-rich alkoxysilane compound, followed by a laser ablation to create the pattern. Then, the entire substrate is immersed into an aqueous solution containing amino-silane equipped Pd nanoparticles for the second modification. Because most substrate surface is hydrophobic, the amino-silane-equipped Pd catalysts can only graft on the laser-ablated zone to accomplish selective ELD.

10.
ACS Appl Mater Interfaces ; 10(46): 39970-39982, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30376713

ABSTRACT

In this work, we have synthesized a novel porphyrin dye named SK7, which contains two N, N-diarylamino moieties at two ß-positions as electron-donating units and one carboxy phenylethynyl moiety at the meso-position as an electron-withdrawing, anchoring group. This novel dye was tested for the application in dye-sensitized solar cells. The light-harvesting behavior of SK7 and YD2 was investigated using UV-vis absorption and density functional calculation. The electron transport properties at the TiO2/dye/electrolyte interface for SK7- and YD2-based devices were evaluated by electrochemical impedance spectroscopy. X-ray crystallographic characterization was conducted to understand the influence of two N, N-diarylamino units at two ß-positions. The power conversion efficiencies of ca. 6.54% under 1 sun illumination (AM 1.5G) and ca. 19.72% under a T5 light source were noted for the SK7 dye. The performance of SK7 is comparable to that of dye YD2, which contains only one N, N-diarylamino moiety at the meso-position (ca. 7.78 and 20.00% under 1 sun and T5 light, respectively).

11.
Langmuir ; 34(45): 13597-13602, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30350707

ABSTRACT

Amino-terminated silane compound modification was wet-processed on a silicon wafer using four different solvents to investigate the property of the self-assembled monolayer (SAM) and its influence on the adhesion of electroless deposited nickel-phosphorus (Ni-P) films. Analyzed by various tools including dynamic light scattering, the atomic force microscope, X-ray photoelectron spectroscopy, inductively coupled plasma with mass spectroscopy, a proper link between the processing solvent and SAM quality is established. It is found that at least the chemical compatibility, the polarity, and the acidity of solvents can affect the final morphology of the resultant SAM. Unlike toluene and ethanol that are most frequently chosen in literature, we conclude that isopropyl alcohol (IPA) is a superior solvent for amino-terminated silane compounds. Owing to the good SAM quality formed in IPA, the adhesion of electroless deposited Ni-P films is largely strengthened, even as high as the bulk strength of silicon wafers.

12.
ACS Appl Mater Interfaces ; 10(41): 35477-35486, 2018 Oct 17.
Article in English | MEDLINE | ID: mdl-30107132

ABSTRACT

Selenium (Se) is one of the potential candidates as photodetector because of its outstanding properties such as high photoconductivity (∼8 × 104 S cm-1), piezoelectricity, thermoelectricity, and nonlinear optical responses. Solution phase synthesis becomes an efficient way to produce Se, but a contamination issue that could deteriorate the electric characteristic of Se should be taken into account. In this work, a facile, controllable approach of synthesizing Se nanowires (NWs)/films via a plasma-assisted growth process was demonstrated at the low substrate temperature of 100 °C. The detailed formation mechanisms of nanowires arrays to thin films at different plasma powers were investigated. Moreover, indium (In) layer was used to enhance the adhesive strength with 50% improvement on a SiO2/Si substrate by mechanical interlocking and surface alloying between Se and In layers, indicating great tolerance for mechanical stress for future wearable devices applications. Furthermore, the direct growth of Se NWs/films on a poly(ethylene terephthalate) substrate was demonstrated, exhibiting a visible to broad infrared detection ranges from 405 to 1555 nm with a high on/off ratio of ∼700 as well as the fast response time less than 25 ms. In addition, the devices exhibited fascinating stability in the atmosphere over one month.

13.
ACS Appl Mater Interfaces ; 9(43): 37786-37796, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28990749

ABSTRACT

The need for low-cost and highly efficient dyes for dye-sensitized solar cells under both the sunlight and dim light environments is growing. We have devised GJ-series push-pull organic dyes which require only four synthesis steps. These dyes feature a linear molecular structure of donor-perylene-ethynylene-arylcarboxylic acid, where donor represents N,N-diarylamino group and arylcarboxylic groups represent benzoic, thienocarboxylic, 2-cyano-3-phenylacrylic, 2-cyano-3-thienoacrylic, and 4-benzo[c][1,2,5]thiadiazol-4-yl-benzoic groups. In this study, we demonstrated that a dye without tedious and time-consuming synthesis efforts can perform efficiently. Under the illumination of AM1.5G simulated sunlight, the benzothiadiazole-benzoic-containing GJ-BP dye shows the best power conversion efficiency (PCE) of 6.16% with VOC of 0.70 V and JSC of 11.88 mA cm-2 using liquid iodide-based electrolyte. It also shows high performance in converting light of 6000 lx light intensity, that is, incident power of ca. 1.75 mW cm-2, to power output of 0.28 mW cm-2 which equals a PCE of 15.79%. Interestingly, the benzoic-containing dye GJ-P with a simple molecular structure has comparable performance in generating power output of 0.26 mW cm-2 (PCE of 15.01%) under the same condition and is potentially viable toward future application.

14.
Sci Rep ; 7(1): 7859, 2017 08 10.
Article in English | MEDLINE | ID: mdl-28798387

ABSTRACT

Spiro-OMeTAD with symmetric spiro-bifluorene unit has dominated the investigation of hole-transporting material (HTM) for efficient perovskite solar cells (PSCs) despite of its low intrinsic hole conductivity and instability. In this study, we designed and synthesized three asymmetric spiro-phenylpyrazole/fluorene base HTMs, namely: WY-1, WY-2 and WY-3. They exhibit excellent electrochemical properties and hole conductivities. Moreover, the PSC based on WY-1 exhibits the highest power conversion efficiency (PCE) of 14.2%, which is comparable to the control device employing spiro-OMeTAD as HTM (14.8%). These results pave the way to further optimization of both molecular design and device performance of the spiro-based HTMs.

15.
Sci Rep ; 7(1): 9656, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28851883

ABSTRACT

In this study, the effect of 3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane (ETAS) modification and post rapid thermal annealing (RTA) treatment on the adhesion of electroless plated nickel-phosphorus (ELP Ni-P) film on polyvinyl alcohol-capped palladium nanoclusters (PVA-Pd) catalyzed silicon wafers is systematically investigated. Characterized by pull-off adhesion, atomic force microscopy, X-ray spectroscopy and water contact angle, a time-dependent, three-staged ETAS grafting mechanism including islandish grafting, a self-assembly monolayer (SAM) and multi-layer grafting is proposed and this mechanism is well correlated to the pull-off adhesion of ELP Ni-P film. In the absence of RTA, the highest ELP Ni-P film adhesion occurs when ETAS modification approaches SAM, where insufficient or multi-layer ETAS grafting fails to provide satisfactory results. On the other hand, if RTA is applied, the best ELP Ni-P film adhesion happens when ETAS modification is islandish owing to the formation of nickel silicide, where SAM or multi-layer ETAS modification cannot provide satisfactory adhesion because the interaction between ETAS and PVA-Pd has been sabotaged during RTA. Evidenced by microstructural images, we also confirmed that ETAS can act as an efficient barrier layer for nickel diffusion to bulk silicon.

16.
J Phys Chem Lett ; 8(8): 1824-1830, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28387117

ABSTRACT

Indoor utilization of emerging photovoltaics is promising; however, efficiency characterization under room lighting is challenging. We report the first round-robin interlaboratory study of performance measurement for dye-sensitized photovoltaics (cells and mini-modules) and one silicon solar cell under a fluorescent dim light. Among 15 research groups, the relative deviation in power conversion efficiency (PCE) of the samples reaches an unprecedented 152%. On the basis of the comprehensive results, the gap between photometry and radiometry measurements and the response of devices to the dim illumination are identified as critical obstacles to the correct PCE. Therefore, we use an illuminometer as a prime standard with a spectroradiometer to quantify the intensity of indoor lighting and adopt the reverse-biased current-voltage (I-V) characteristics as an indicator to qualify the I-V sampling time for dye-sensitized photovoltaics. The recommendations can brighten the prospects of emerging photovoltaics for indoor applications.

17.
ACS Appl Mater Interfaces ; 9(10): 8623-8633, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28195454

ABSTRACT

Crystal morphology and structure are important for improving the organic-inorganic lead halide perovskite semiconductor property in optoelectronic, electronic, and photovoltaic devices. In particular, crystal growth and dissolution are two major phenomena in determining the morphology of methylammonium lead iodide perovskite in the sequential deposition method for fabricating a perovskite solar cell. In this report, the effect of immersion time in the second step, i.e., methlyammonium iodide immersion in the morphological, structural, optical, and photovoltaic evolution, is extensively investigated. Supported by experimental evidence, a five-staged, time-dependent evolution of the morphology of methylammonium lead iodide perovskite crystals is established and is well connected to the photovoltaic performance. This result is beneficial for engineering optimal time for methylammonium iodide immersion and converging the solar cell performance in the sequential deposition route. Meanwhile, our result suggests that large, well-faceted methylammonium lead iodide perovskite single crystal may be incubated by solution process. This offers a low cost route for synthesizing perovskite single crystal.

18.
Sci Rep ; 5: 16098, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26526771

ABSTRACT

In this study, the electrodeposition (ED) of ultrathin, compact TiO2 blocking layers (BLs) on fluorine-doped tin oxide (FTO) glass for perovskite solar cells (PSCs) is evaluated. This bottom-up method allows for controlling the morphology and thickness of TiO2 films by simply manipulating deposition conditions. Compared with BLs produced using the spin-coating (SC) method, BLs produced using ED exhibit satisfactory surface coverage, even with a film thickness of 29 nm. Evidence from cyclic voltammetry shows that an ED BL suppresses interfacial recombination more profoundly than an SC BL does, consequently improving the photovoltaic properties of the PSC significantly. A PSC equipped with an ED TiO2 BL having a 13.6% power conversion efficiency is demonstrated.

19.
Chem Commun (Camb) ; 51(68): 13294-7, 2015 Sep 04.
Article in English | MEDLINE | ID: mdl-26203787

ABSTRACT

A novel, aqueous precursor system (Pb(NO3)2 + water) is developed to replace conventional (PbI2 + DMF) for fabricating methylammonium lead iodide (MAPbI3) perovskite solar cells (PSCs). When the morphology and surface coverage of the Pb(NO3)2 film was controlled during coating, a power conversion efficiency of 12.58% under standard conditions (AM1.5, 100 mW cm(-2)) was achieved for the PSC.

20.
Chem Commun (Camb) ; 51(11): 2152-5, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25555237

ABSTRACT

A series of new phenothiazine-based dyes (HL5-HL7) with double acceptors/anchors have been synthesized and used as the sensitizers for highly efficient dye-sensitized solar cells (DSSCs). Among them, the HL7-based cell exhibits the best efficiency of 8.32% exceeding the N719-based cell (7.35%) by ∼13%.

SELECTION OF CITATIONS
SEARCH DETAIL
...