Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Front Immunol ; 15: 1403578, 2024.
Article in English | MEDLINE | ID: mdl-39076974

ABSTRACT

The capacity of lymphocytes continuously home to lymphoid structures is remarkable for cancer immunosurveillance and immunotherapy. Lymphocyte homing and recirculation within the tumor microenvironment (TME) are now understood to be adaptive processes that are regulated by specialized cytokines and adhesion molecule signaling cascades. Restricted lymphocyte infiltration and recirculation have emerged as key mechanisms contributing to poor responses in cancer immunotherapies like chimeric antigen receptor (CAR)-T cell therapy and immune checkpoint blockades (ICBs). Uncovering the kinetics of lymphocytes in tumor infiltration and circulation is crucial for improving immunotherapies. In this review, we discuss the current insights into the adhesive and migrative molecules involved in lymphocyte homing and transmigration. The potential mechanisms within the TME that restrain lymphocyte infiltration are also summarized. Advanced on these, we outline the determinates for tertiary lymphoid structures (TLSs) formation within tumors, placing high expectations on the prognostic values of TLSs as therapeutic targets in malignancies.


Subject(s)
Immunotherapy , Neoplasms , Tertiary Lymphoid Structures , Tumor Microenvironment , Humans , Neoplasms/therapy , Neoplasms/immunology , Tertiary Lymphoid Structures/immunology , Tumor Microenvironment/immunology , Animals , Immunotherapy/methods , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism
2.
Front Immunol ; 14: 1198551, 2023.
Article in English | MEDLINE | ID: mdl-37398674

ABSTRACT

The fundamental principle of immune checkpoint blockade (ICB) is to protect tumor-infiltrating T cells from being exhausted. Despite the remarkable success achieved by ICB treatment, only a small group of patients benefit from it. Characterized by a hypofunctional state with the expression of multiple inhibitory receptors, exhausted T (Tex) cells are a major obstacle in improving ICB. T cell exhaustion is a progressive process which adapts to persistent antigen stimulation in chronic infections and cancers. In this review, we elucidate the heterogeneity of Tex cells and offer new insights into the hierarchical transcriptional regulation of T cell exhaustion. Factors and signaling pathways that induce and promote exhaustion are also summarized. Moreover, we review the epigenetic and metabolic alterations of Tex cells and discuss how PD-1 signaling affects the balance between T cell activation and exhaustion, aiming to provide more therapeutic targets for applications of combinational immunotherapies.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Gene Regulatory Networks , T-Cell Exhaustion , T-Lymphocytes , Gene Expression Regulation , Neoplasms/genetics , Neoplasms/therapy
3.
Front Immunol ; 13: 927474, 2022.
Article in English | MEDLINE | ID: mdl-36059511

ABSTRACT

Presenilin 1 (PSEN1), as a catalytical core of the γ-secretase complex, plays multiple actions through mediating transmembrane domain shedding of the substrates. Unlike extensive studies performed on investigating the functions of γ-secretase substrates or the effects of γ-secretase inhibitors, our findings uncover a potential action of PSEN1 on PD-L1 alternative truncation and nuclear translocation, broadening our understanding on how the γ-secretase contributes to colon cancer development as well as suggesting a potential strategy to improve the efficacy of PD-1/PD-L1 blockade. Immunohistochemical data showed loss of PD-L1 protein expression in all the primary colon adenocarcioma (COAD) cases in the HPA collection, while PSEN1 was scored to be highly expressed, indicating their converse expression patterns (p<0.001). Meanwhile a strongly positive gene correlation was explored by TIMER2 and GEPIA (p<0.001). Up-regulated PSEN1 expression in COAD might facilitate liberating a C-terminal PD-L1 truncation via proteolytic processing. Then following an established regulatory pathway of PD-L1 nuclear translocation, we found that PSEN1 showed significant correlations with multiple components in HDAC2-mediated deacetylation, clathrin-dependent endocytosis, vimentin-associated nucleocytoplasmic shuttling and importin family-mediated nuclear import. Moreover, connections of PSEN1 to the immune response genes transactivated by nuclear PD-L1 were tested. Additionally, contributions of PSEN1 to the tumor invasiveness (p<0.05) and the tumor infiltrating cell enrichments (p<0.001) were investigated by cBioportal and the ESTIMATE algorithm. Levels of PSEN1 were negatively correlated with infiltrating CD8+ T (p<0.05) and CD4+ T helper (Th) 1 cells (p<0.001), while positively correlated with regulatory T cells (Tregs) (p<0.001) and cancer associated fibroblasts (CAFs) (p<0.001). It also displayed significant associations with diverse immune metagenes characteristic of T cell exhaustion, Tregs and CAFs, indicating possible actions in immune escape. Despite still a preliminary stage of this study, we anticipate to deciphering a novel function of PSEN1, and supporting more researchers toward the elucidations of the mechanisms linking the γ-secretase to cancers, which has yet to be fully addressed.


Subject(s)
B7-H1 Antigen , Cancer-Associated Fibroblasts , Colonic Neoplasms , Presenilin-1 , T-Lymphocytes , Amyloid Precursor Protein Secretases/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Cancer-Associated Fibroblasts/immunology , Colonic Neoplasms/genetics , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Humans , Presenilin-1/genetics , Presenilin-1/immunology , T-Lymphocytes/immunology
4.
Front Cell Dev Biol ; 9: 669254, 2021.
Article in English | MEDLINE | ID: mdl-34222240

ABSTRACT

The circadian machinery is critical for the normal physiological functions and cellular processes. Circadian rhythm disruption has been associated with immune suppression which leads to higher cancer risk, suggesting a putative tumor protective role of circadian clock homeostasis. CBX4, as an epigenetic regulator, has been explored for its involvement in tumorigenesis. However, little is known about the correlation between CBX4 and circadian rhythm disruption in colon cancer as well as the potential impact on the tumor immunity. A significant upregulation of CBX4 was identified in the TCGA colon adenocarcinoma (COAD) samples when compared with the normal controls (p < 0.001). This differential expression was confirmed at the protein level using colon adenocarcinoma tissue array (p < 0.01). CBX4 was up-regulated in the recurred/progressed colon cancer cases compared with the disease-free samples (p < 0.01), suggesting CBX4 as a potential predictor for poor prognosis. With regard to nodular metastasis, CBX4 was found to be associated with early onset of metastatic diseases but not late progression. The circadian rhythm is orchestrated by the alternating activation and suppression of the CLOCK/ARNTL-driven positive loop and the PER/CRY-controlled negative loop. In COAD, CBX4 was negatively correlated with CLOCK (p < 0.001), and positively correlated with PER1 (p < 0.001), PER3 (p < 0.01), and CRY2 (p < 0.001) as well as NR1D1 (p < 0.001), a critical negative regulator of the circadian clock. These interactions consistently impacted on patient survival based on the colorectal cancer cohorts GSE17536 and GSE14333 of PrognoScan. CBX4 showed significant negative correlations with infiltrating B cells (p < 0.05) and CD4+ T cells (p < 0.01), and positive correlations with myeloid derived suppressor cells (MDSCs) (p < 0.05) and cancer associated fibroblast (CAFs) (p < 0.001), as well as a low immunoscore. Moreover, CBX4 displayed significant correlations with diverse immune metagenes. PER1 and PER3, consistent with their coordinated expression with CBX4, also had strong correlations with these gene representatives in COAD, suggesting a potential interaction of CBX4 with the circadian machinery. Our studies implicate that CBX4 may contribute to colon cancer development via potential influence on circadian rhythm and immune infiltration. These findings provide new insights into deciphering the function of CBX4, and may contribute to the development of new targeting strategies.

6.
Lung Cancer ; 115: 5-11, 2018 01.
Article in English | MEDLINE | ID: mdl-29290262

ABSTRACT

OBJECTIVES: ALK, RET and ROS1 fusions have been identified as treatable targets in 5%-15% of non-small-cell lung cancers, and thanks to the advanced sequencing technologies, their new partner genes have been steadily detected. Here we identified a rare fusion of ALK (GCC2-ALK) in a patient with advanced lung adenocarcinoma and monitored the treatment efficacy of ALK inhibitors on this patient. We further performed in vitro functional studies of this fusion protein for evaluating its oncogenic potential. MATERIALS AND METHODS: The GCC2-ALK fusion gene was identified by targeted next generation sequencing (NGS) from the tumor DNA samples, and its fusion product was confirmed by Sanger sequencing the cDNA product. The functional study of GCC2-ALK was performed in Ba/F3 cells with cell proliferation and viability assays. The activation of downstream signaling pathways of ALK and their responses to crizotinib inhibition were studied in HEK-293 and 293T cells with ectopic expression of GCC2-ALK. In parallel, disease progression in the patient was monitored by computed tomography scanning and targeted NGS of either liquid or tissue biopsy samples throughout and after crizotinib treatment. RESULTS: Similarly to EML4-ALK, the GCC2-ALK fusion protein promotes IL-3-independent growth of Ba/F3 cells. Ectopic expression of GCC2-ALK leads to hyper-activation of ALK downstream signaling that can be inhibited by crizotinib. Crizotinib treatment of the patient resulted in 18 months of progression free survival without any trace of GCC2-ALK fusion in the liquid biopsies. Re-biopsy of a lung lesion at progression identified the re-occurrence of GCC2-ALK. The patient was then administrated with a second-generation ALK inhibitor, ceritinib, and received partial response until the last follow-up. CONCLUSION: We identified and functionally validated GCC2-ALK as a constitutively activated fusion in NSCLC. The patient was benefited from crizotinib treatment initially and then ceritinib after progression, suggesting GCC2-ALK as a novel therapeutic target for ALK inhibitors.


Subject(s)
Adenocarcinoma/genetics , Anaplastic Lymphoma Kinase/genetics , Golgi Matrix Proteins/genetics , Lung Neoplasms/genetics , Oncogene Proteins, Fusion/genetics , Adenocarcinoma/drug therapy , Adult , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Crizotinib/therapeutic use , Female , HEK293 Cells , Humans , Lung Neoplasms/drug therapy , Molecular Targeted Therapy , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Sulfones/therapeutic use
7.
Mol Cell Biol ; 32(22): 4662-73, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22988296

ABSTRACT

Fibroblast growth factor (FGF) receptor 2 (FGFR2) has been identified in genome-wide association studies to be associated with increased breast cancer risk; however, its mechanism of action remains unclear. Here we show that the two major FGFR2 alternatively spliced isoforms, FGFR2-IIIb and FGFR2-IIIc, interact with IκB kinase ß and its downstream target, NF-κB. FGFR2 inhibits nuclear RelA/p65 NF-κB translocation and activity and reduces expression of dependent transcripts, including interleukin-6. These interactions result in diminished STAT3 phosphorylation and reduced breast cancer cell growth, motility, and invasiveness. FGFR2 also arrests the epithelial cell-to-mesenchymal cell transition (EMT), resulting in attenuated neoplastic growth in orthotopic xenografts of breast cancer cells. Our studies provide strong evidence for the protective effects of FGFR2 on tumor progression. We propose that FGFR2 serves as a scaffold for multiple components of the NF-κB signaling complex. Through these interactions, FGFR2 isoforms can respond to tissue-specific FGF signals to modulate epithelial cell-stromal cell communications in cancer progression.


Subject(s)
Breast Neoplasms/metabolism , NF-kappa B/genetics , Receptor, Fibroblast Growth Factor, Type 2/genetics , Signal Transduction/genetics , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation , Cell Transformation, Neoplastic , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , I-kappa B Kinase/genetics , I-kappa B Kinase/metabolism , Interleukin-6/biosynthesis , Mice , NF-kappa B/metabolism , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , Receptor, Fibroblast Growth Factor, Type 2/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL