Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38994881

ABSTRACT

BACKGROUND: Cardiac stereotactic body radiotherapy (CSBRT) is an emerging and promising noninvasive technique for treating refractory arrhythmias utilizing highly precise, single or limited-fraction high-dose irradiations. This method promises to revolutionize the treatment of cardiac conditions by delivering targeted therapy with minimal exposure to surrounding healthy tissues. However, the dynamic nature of cardiorespiratory motion poses significant challenges to the precise delivery of dose in CSBRT, introducing potential variabilities that can impact treatment efficacy. The complexities of the influence of cardiorespiratory motion on dose distribution are compounded by interplay and blurring effects, introducing additional layers of dose uncertainty. These effects, critical to the understanding and improvement of the accuracy of CSBRT, remain unexplored, presenting a gap in current clinical literature. PURPOSE: To investigate the cardiorespiratory motion characteristics in arrhythmia patients and the dosimetric impact of interplay and blurring effects induced by cardiorespiratory motion on CSBRT plan quality. METHODS: The position and volume variations in the substrate target and cardiac substructures were evaluated in 12 arrhythmia patients using displacement maximum (DMX) and volume metrics. Moreover, a four-dimensional (4D) dose reconstruction approach was employed to examine the dose uncertainty of the cardiorespiratory motion. RESULTS: Cardiac pulsation induced lower DMX than respiratory motion but increased the coefficient of variation and relative range in cardiac substructure volumes. The mean DMX of the substrate target was 0.52 cm (range: 0.26-0.80 cm) for cardiac pulsation and 0.82 cm (range: 0.32-2.05 cm) for respiratory motion. The mean DMX of the cardiac structure ranged from 0.15 to 1.56 cm during cardiac pulsation and from 0.35 to 1.89 cm during respiratory motion. Cardiac pulsation resulted in an average deviation of -0.73% (range: -4.01%-4.47%) in V25 between the 3D and 4D doses. The mean deviations in the homogeneity index (HI) and gradient index (GI) were 1.70% (range: -3.10%-4.36%) and 0.03 (range: -0.14-0.11), respectively. For cardiac substructures, the deviations in D50 due to cardiac pulsation ranged from -1.88% to 1.44%, whereas the deviations in Dmax ranged from -2.96% to 0.88% of the prescription dose. By contrast, the respiratory motion led to a mean deviation of -1.50% (range: -10.73%-4.23%) in V25. The mean deviations in HI and GI due to respiratory motion were 4.43% (range: -3.89%-13.98%) and 0.18 (range: -0.01-0.47) (p < 0.05), respectively. Furthermore, the deviations in D50 and Dmax in cardiac substructures for the respiratory motion ranged from -0.28% to 4.24% and -4.12% to 1.16%, respectively. CONCLUSIONS: Cardiorespiratory motion characteristics vary among patients, with the respiratory motion being more significant. The intricate cardiorespiratory motion characteristics and CSBRT plan complexity can induce substantial dose uncertainty. Therefore, assessing individual motion characteristics and 4D dose reconstruction techniques is critical for implementing CSBRT without compromising efficacy and safety.

2.
Front Public Health ; 12: 1351367, 2024.
Article in English | MEDLINE | ID: mdl-38873320

ABSTRACT

Objective: This research investigates the role of human factors of all hierarchical levels in radiotherapy safety incidents and examines their interconnections. Methods: Utilizing the human factor analysis and classification system (HFACS) and Bayesian network (BN) methodologies, we created a BN-HFACS model to comprehensively analyze human factors, integrating the hierarchical structure. We examined 81 radiotherapy incidents from the radiation oncology incident learning system (RO-ILS), conducting a qualitative analysis using HFACS. Subsequently, parametric learning was applied to the derived data, and the prior probabilities of human factors were calculated at each BN-HFACS model level. Finally, a sensitivity analysis was conducted to identify the human factors with the greatest influence on unsafe acts. Results: The majority of safety incidents reported on RO-ILS were traced back to the treatment planning phase, with skill errors and habitual violations being the primary unsafe acts causing these incidents. The sensitivity analysis highlighted that the condition of the operators, personnel factors, and environmental factors significantly influenced the occurrence of incidents. Additionally, it underscored the importance of organizational climate and organizational process in triggering unsafe acts. Conclusion: Our findings suggest a strong association between upper-level human factors and unsafe acts among radiotherapy incidents in RO-ILS. To enhance radiation therapy safety and reduce incidents, interventions targeting these key factors are recommended.


Subject(s)
Bayes Theorem , Radiotherapy , Humans , Radiotherapy/adverse effects , Radiotherapy/statistics & numerical data , Patient Safety/statistics & numerical data , Medical Errors/statistics & numerical data , Safety Management , Radiation Oncology , Factor Analysis, Statistical
3.
Environ Res ; 208: 112573, 2022 05 15.
Article in English | MEDLINE | ID: mdl-34915028

ABSTRACT

Exothermic reaction systems of non-class A geometries are very common, with an endless rectangular rod typical. As a strong nonlinear source word is included in the governing equation, which is sensitive to the frank-kamenetskii parameter, there is no analytical solution. Many methods were previously suggested. However, with them are often non-physical solutions obtained. In this paper, the lattice Boltzmann process provides us with complete physical and precise solutions. We also analysed the sensitivity of the strong nonlinear source term and suggested advice for similar numerical calculations and experiments with thermal explosion.

SELECTION OF CITATIONS
SEARCH DETAIL
...