Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
J Chromatogr A ; 1705: 464142, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37329652

ABSTRACT

Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) is an effective method for detecting of low-mass molecules. In this study, two-dimensional boron nanosheets (2DBs) were fabricated through thermal oxidation etching and coupling liquid exfoliation technologies, and applied as a matrix and selective sorbent for detecting cis-diol compounds by SALDI-TOF MS. The outstanding nanostructure and boric acid active sites of 2DBs endow them with sensitivity for cis-diol compound detection, excellent selectivity, and low background interference for complex samples. The specific in-situ enrichment faculty of the 2DBs as a matrix was investigated by SALDI-TOF MS using glucose, arabinose, and lactose as model analytes. In the presence of 100 -fold more interfering substances, the 2DBs showed high selectivity against cis-diol compounds, and exhibited a better sensitivity and a reduced limit of detection through enrichment treatment than graphene oxide matrices. The linearity, limit of detection (LOD), reproducibility, and accuracy of the method were evaluated under optimized conditions. The results showed that the linear relationships of six saccharides remained in the range of 0.05-0.6 mM with a correlation coefficient r ≥0.98. The LODs of six saccharides were 1 nM (glucose, lactose, mannose, fructose) and 10 nM (galactose, arabinose). Sample-to-sample (n = 6) with relative standard deviations (RSDs) of 3.2% to 8.1% were observed. Recoveries (n = 5) of 87.9-104.6% were obtained at three spiked levels in the milk samples. The proposed strategy promoted the development of a matrix for use with SALDI-TOF MS detection, in which the UV absorption properties and enrichment capabilities of 2DBs were combined.


Subject(s)
Arabinose , Boron , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Lactose , Reproducibility of Results , Glucose , Lasers
2.
Talanta ; 259: 124496, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37031543

ABSTRACT

Chiral transition metal oxides with tunable structures and multiple physicochemical features have been increasingly applied for chiral sensing and detection. In this work, chiral zinc oxide (ZnO) was first applied as selector to construct quartz crystal microbalance (QCM) sensor for enantioselective recognition of amino acids. The chiral ZnO was prepared by a methionine-induced self-assembly strategy and its high topological chirality was confirmed by several techniques such as circular dichroism spectrum. The chiral discrimination factors were calculated by frequency shifts in response to aspartic acid, phenylalanine, lysine and arginine on L-ZnO surface, achieving 1.89 ± 0.04, 1.76 ± 0.11, 1.66 ± 0.07 and 1.54 ± 0.09, respectively. Notably, L-enantiomers preferred stronger absorptions on L-ZnO surface as compared to D-forms. It was further found that this sensor was appropriate for quantitative analysis and enantiomer excess analysis and adsorption kinetics study. Furthermore, molecular docking revealed the recognition mechanism, where chiral distinction was caused by the different steric interactions between enantiomers and chiral ZnO. This method enjoyed merits of high enantioselectivity, simple preparation and low cost, offering newly chiral sensing method for other molecules.


Subject(s)
Amino Acids , Zinc Oxide , Stereoisomerism , Quartz Crystal Microbalance Techniques/methods , Molecular Docking Simulation
3.
Chemosphere ; 313: 137470, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36493886

ABSTRACT

Accurate ecotoxicity assessment of contaminated soil is critical to public health, and the luminescent bacteria (Vibrio fischeri) method is the most commonly used. Hydrophobic compounds such as polycyclic aromatic hydrocarbons (PAHs) in soil cannot be in contact with luminescent bacteria due to their low water solubility so that the luminescence inhibitory effect cannot be observed. The underestimated biological toxicity makes the test unreliable and en-dangers public health and safety. The commonly adopted improved method of adding cosolvents has limited effect, it was only effective for low-hydrophobicity chemicals and could not be used for ecotoxicity evaluation of high-hydrophobicity chemicals. Therefore, we constructed Pickering emulsions using luminescent bacteria modified with n-dodecanol in which PAHs were dissolved in the oil phase, n-tetradecane. Then the luminescent bacteria could tightly adhere to the oil-water interface and contact PAHs. As a result, their bioluminescence was suppressed to varying degrees depending on the chemical species and concentrations. With no solubility limitation, highly hydrophobic PAHs could even completely inhibit bacterial bioluminescence, hence the toxicity information was accurately displayed and the median effect concentration (EC50) values could be calculated. This Pickering emulsion-based method was successfully applied for the accurate ecotoxicity evaluation of highly hydrophobic PAHs and soil samples contaminated with them, which all previous methods could not achieve. This method overcomes the problem of ecotoxicity evaluation of hydrophobic compounds, and has great potential for practical application, whether it is pure chemicals or various real samples from the ecological environment.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Aliivibrio fischeri , Polycyclic Aromatic Hydrocarbons/chemistry , Emulsions/pharmacology , Soil , Water/pharmacology , Soil Pollutants/toxicity
4.
Analyst ; 147(20): 4570-4577, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36106835

ABSTRACT

The analysis of chiral α-amino acids is of great significance in asymmetric synthesis, nutrition, food science, and microbiology. However, the ability of chiral recognition is difficult to achieve. Due to the demand for expensive equipment and skilled operators, traditional methods such as high-performance liquid chromatography are limited. The previously reported methods based on chemical sensor arrays usually cannot carry out the chiral analysis. Here, we developed a novel biosensor array based on the interaction between a suite of host-based luminescent bacteria and amino acids and used linear discriminant analysis to reflect their luminescence response patterns. This biosensor array could effectively discriminate chiral amino acids, including 19 L-amino acids, their corresponding D-enantiomers, and the achiral glycine. In addition, the determination of enantiomeric purity and quantitative ability has been proved. The successful identification of a complex system containing multiple chiral amino acids further demonstrates the superiority of the bioluminescent sensor array. Moreover, this sensor array could efficiently monitor the dynamic composition of free amino acids in the process of milk fermentation. Finally, the bioluminescence response mechanism of the luminescent bacteria for the recognition of chirality was clarified. This approach possessed the advantages of facile construction, high throughput, easy operation, high accuracy and fast response.


Subject(s)
Amino Acids , Luminescence , Amines , Amino Acids/chemistry , Fermentation , Glycine , Stereoisomerism , Yogurt/analysis
5.
Int J Gen Med ; 14: 5069-5078, 2021.
Article in English | MEDLINE | ID: mdl-34511989

ABSTRACT

BACKGROUND: High-resolution ultrasound is the first choice for the diagnosis of thyroid nodules, but it is still difficult to distinguish between follicular thyroid carcinoma (FTC) and follicular adenoma (FA). Our research aimed to develop and validate an ultrasonic diagnostic model for differentiating FTC from FA. METHODS: This study retrospectively analyzed 196 patients who were diagnosed as FTC (n=83) and FA (n=113). LASSO regression analysis was used to screen clinical and ultrasonic features. Multivariate logistic regression analysis was used to establish the ultrasonic diagnostic model of FTC. Nomogram was used for the visualization of diagnostic models. C-index, ROC, and calibration curves analysis were used to evaluate the accuracy of the diagnostic model. Decision curve analysis (DCA) was used to evaluate the net benefits of the ultrasonic diagnostic model for FTC diagnosis under different threshold probabilities. The bootstrap method was used to verify the ultrasonic diagnostic model. RESULTS: After Lasso regression analysis, 10 clinical and ultrasonic features were used to construct the ultrasonic diagnostic model of FTC. The C-index and AUC of the model were 0.868 and 0.860, respectively. DCA showed that the ultrasonic model had good clinical application value. The C-index in the validation group was 0.818, which was close to the C-index in the model. CONCLUSION: Ultrasonic diagnostic model constructed with 10 clinical and ultrasonic features can better distinguish FTC from FA.

6.
Int J Gen Med ; 14: 2321-2328, 2021.
Article in English | MEDLINE | ID: mdl-34113162

ABSTRACT

PURPOSE: Ultrasonography as the first choice for thyroid nodules is still difficult to distinguish between solid follicular thyroid neoplasm (FTN) and solid nodular goiter (NG). We tried to investigate the value of relative size (M/S, M: the maximum diameter of target nodule, S: the maximum diameter of the largest of the remaining nodules) that may help to differentiate FTN from NG. METHODS: T test and chi-square test were used to retrospectively analyze the differences of the clinical and ultrasonographic characteristics between FTN and NG in 422 cases in our hospital. T test was used to analyze the difference of M/S value in the two kinds of nodules. ROC was used to evaluate the accuracy of M/S value in distinguishing the two. RESULTS: There were statistically significant differences in age, echogenicity, calcification, peripheral halo and blood supply between the two. The M/S value is not only significantly different in the two kinds of nodules but also can be used as a quantitative indicator to guide ultrasound diagnosis. ROC analysis showed that the cutoff point and AUC of M/S value were 1.94 and 0.709, respectively. CONCLUSION: In the ultrasound diagnosis of multiple thyroid nodules, the M/S value can better distinguish FTN and NG. We need to be aware of FTN when the M/S value of the nodule is greater than 2.

7.
Anal Methods ; 13(16): 1905-1910, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33913945

ABSTRACT

The chirality of amino acids plays an important role in biological and medical sciences. The development of achiral small-molecule probes that can simultaneously determine the absolute configuration, enantiomeric excess, and total concentration of amino acids is significant. We reported the currently available achiral coumarin aldehyde probe that could form Schiff bases with free amino acids at room temperature to induce CD signals and change UV-vis signals. The red-shifted UV-vis signals were independent of the substrate's chirality and could be used to determine the total concentration. Conversely, the enantioselective CD signals could be used to determine the absolute configuration and enantiomeric excess. The usefulness and practicability of this sensing method were demonstrated by analyzing 6 non-racemic phenylalanine samples with different enantiomeric compositions and concentrations.


Subject(s)
Amines , Amino Acids , Aldehydes , Coumarins , Stereoisomerism
8.
Med Sci Monit ; 27: e929408, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33819211

ABSTRACT

BACKGROUND The aim of this study was to assess the interaction between thyroid malignancies and thyroid anterior capsule by ultrasound quantification to determine extra-capsular invasion. MATERIAL AND METHODS A total of 145 patients preoperatively diagnosed with malignant nodules under the thyroid anterior capsule were selected and routinely examined by ultrasound. The length of the nodules (from the junction of the nodule capsule to the deepest point of the nodule, vertical diameter, V) and the distance between the nodule protruding from thyroid capsule and the highest protruding (ledge length, L) nodule were used to obtain the L/V ratio. These parameters where then used to compare the efficacy of predicting extra-thyroid extension (ETE) between L/V, the aspect ratio of the tumor, and manual judgment. RESULTS Out of 145 nodules, there were 63 ETEs and 82 non-ETEs determined by ultrasound. Extra-capsular invasion was associated with L//V ratio, but there was no significant correlation between capsular invasion and AR (aspect ratio), age, location, or presence of clustered calcification. The ability of the ratio of L/V to predict extra-capsular invasion was superior to the predictive ability of the AR ratio. With a Youden index of 0.593, the L/V ratio was 0.2325. The use of the L/V ratio to determine the presence of ETE was superior to subjective visual judgment. CONCLUSIONS The calculation of L/V ratio by ultrasound could more precisely predict the ETE compared with manual judgment, which indirectly reflects the interaction between thyroid capsule and malignant nodules. The above conclusions need to be confirmed by a range of cases.


Subject(s)
Carcinoma, Papillary/diagnosis , Thyroid Gland/pathology , Thyroid Neoplasms/diagnosis , Ultrasonography/methods , Adult , Carcinoma, Papillary/pathology , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Neoplasm Invasiveness , Retrospective Studies , Thyroid Neoplasms/pathology
9.
J Crit Care ; 62: 65-71, 2021 04.
Article in English | MEDLINE | ID: mdl-33285371

ABSTRACT

PURPOSE: To investigate the effect of Neuromuscular Electrical Stimulation (NMES) on muscle thickness, strength and morphological and molecular markers of the quadriceps. MATERIALS AND METHODS: Adult critically ill patients with an expected prolonged stay received unilateral quadriceps NMES sessions for 7 consecutive days. Before and after the intervention period, quadriceps thickness was measured with ultrasound. After the intervention period, strength was assessed in cooperative patients and muscle biopsies were taken. Multivariable regression was performed to identify factors affecting muscle thickness loss. RESULTS: Muscle thickness decreased less in the stimulated leg (-6 ± 16% versus -12 ± 15%, p = 0.014, n = 47). Strength was comparable. Opioid administration, minimal muscle contraction and more muscle thickness loss in the non-stimulated muscle were independently associated with better muscle thickness preservation. Stimulated muscles showed a shift towards larger myofibers and higher MyHC-I gene expression. NMES did not affect gene expression of other myofibrillary proteins, MuRF-1 or atrogin-1. Signs of myofiber necrosis and inflammation were comparable for both muscles. CONCLUSIONS: NMES attenuated the loss of muscle mass, but not of strength, in critically ill patients. Preservation of muscle mass was more likely in patients receiving opioids, patients with a minimal muscle contraction during NMES and patients more prone to lose muscle mass. TRIAL REGISTRATION: clinicaltrials.govNCT02133300.


Subject(s)
Critical Illness , Electric Stimulation Therapy , Adult , Critical Illness/therapy , Electric Stimulation , Humans , Muscle Strength , Quadriceps Muscle/diagnostic imaging
10.
Anal Bioanal Chem ; 412(29): 8127-8134, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32918558

ABSTRACT

Although luminescent bacteria-based bioluminescence inhibition assay has been widely used in the toxicity assessment of environmental pollutants, the response of a luminescent bacterium usually lacks specificity to a target analyte. Recently, some specific analyte inductive promoters were fused to the lux genes for the purpose of selective bioluminescent sensing, and suits of specific promoters were fused to lux genes to compose a bioluminescent array sensor for simultaneous identification of multiple analytes. However, specific promoter-based methods still suffer from drawbacks including limited selectivity, slow responding time, expensive to construct different promoters involved plasmids, and laborious to find new promoters. Herein, we proposed a novel strategy to construct a lux reporter array sensor by directly transforming the natural lux genes in different bacterial hosts without the involvement of any specific promoters. Due to the distinct pathways of signal production, the responding time of the current different bacterial host (DBH)-based lux reporter array has nearly an order of magnitude faster than with specific promoter-based methods. The DBH-based lux reporter array was successfully used for simultaneous identification, quantification, and toxicity/bioactivity assessment of multiple metal ions. Obviously, all the chemical synthetic material-based metal ion sensing methods cannot simultaneously achieve analysis and toxicity evaluation. This approach possessed additional advantages of facile construction, easy operation, high selectivity, fast response, and strong adaptability to other analytes. A different bacterial host-based lux reporter array was established for simultaneous analysis and toxicity assessment of multiple metal ions.


Subject(s)
Bacteria/drug effects , Genes, Reporter , Metals/analysis , Metals/toxicity , Bacteria/genetics , Genes, Bacterial , Limit of Detection , Promoter Regions, Genetic , Spectrometry, Fluorescence/methods
11.
Front Physiol ; 11: 833, 2020.
Article in English | MEDLINE | ID: mdl-32982765

ABSTRACT

Cough exacerbation in cold environments is a characteristic feature of patients with chronic cough. There is consensus that inhalation of cold air stimulates cough receptors but this idea is not consistent with the fact that cold air is usually unable to directly enter the lower airway. To elucidate the effects of cold environments and transient receptor potential ankyrin 1 (TRPA1) on cough, we compared cough reactivity, airway inflammation, and TRPA1 expression in guinea pigs with chronic cough induced by the repeated inhalation of citric acid for 15 days. The guinea pigs were exposed to cold environments for three consecutive days from day 13 to 15. Repeated inhalation of citric acid increased cough reactivity to inhaled cinnamaldehyde. We found that exposure to cold environments further aggravated cough hyperreactivity in guinea pigs with chronic cough, but not in normal guinea pigs. Cough hyperreactivity was promoted when the whole body and trunk-limbs, but not the heads, of the guinea pigs were exposed to cold environments, and abolished by pretreating the skin through immersion in the TRPA1 antagonist, HC-030031. Substance P levels in bronchoalveolar lavage fluid, and TRPA1 expression in the trachea and skin, were increased in guinea pigs when the whole body and trunk-limbs, rather than the head, were exposed to cold environments. However, this trend was also abolished by pretreatment of the skin via immersion in HC-030031. Similar changes in TRPA1 expression were also detected in the sensory fibers of the trachea and skin, as identified by immunofluorescence and laser-scanning confocal microscopy analysis. These results suggest that exaggerated cough hyperreactivity induced by cold environments may be related to activation of the cold-sensing TRPA1 signaling pathway in the skin, rather than the inhalation of cold air.

12.
Chem Sci ; 11(41): 11344-11350, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-34094377

ABSTRACT

Nanozymes as a newcomer in the artificial enzyme family have shown several advantages over natural enzymes such as their high stability in harsh environments, facile production on large scale, long storage time, low costs, and higher resistance to biodegradation. However, compared with natural enzymes, it is still a great challenge to design a nanozyme with high selectivity, especially high enantioselectivity. It is highly desirable and demanding to develop chiral nanozymes with high and on-demand enantioselectivity for practical applications. Herein, we present an unprecedented approach to construct chiral artificial peroxidase with ultrahigh enantioselectivity. Inspired by the structure of the natural enzyme horseradish peroxidase (HRP), we have constructed a series of stereoselective nanozymes (Fe3O4@Poly(AA)) by using the ferromagnetic nanoparticle (Fe3O4 NP) yolk as the catalytic core and amino acid-appended chiral polymer shell as the chiral selector. Among them, Fe3O4@Poly(d-Trp) exhibits the highest enantioselectivity. More intriguingly, their enantioselectivity will be readily reversed by replacing d-Trp with l-Trp. The selectivity factor is up to 5.38, even higher than that of HRP. Kinetic parameters, dialysis experiments, and molecular simulations together with activation energy reveal that the selectivity originates from the d-/l-Trp appended polymer shell, which can result in better affinity and catalytic activity to d-/l-tyrosinol. The artificial peroxidases have been used for asymmetric catalysis to prepare enantiopure d- or l-enantiomers. Besides, by using fluorescent labelled FITC-tyrosinolL and RhB-tyrosinolD, the artificial peroxidases can catalyze green or red fluorescent chiral tyrosinol to selectively label live yeast cells among yeast, S. aureus, E. coli and B. subtilis bacterial cells. This work opens a new avenue for better design of stereoselective artificial enzymes.

13.
ACS Sens ; 5(1): 40-49, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31829565

ABSTRACT

Fluorescent microscopic imaging with the help of small-molecule probes (chemoprobes) is one of the most feasible approaches for noninvasive sensing of intracellular molecules. However, the "always on" property of current chemoprobes failed to achieve time-resolved monitoring. Here, we report the development of a supramolecular nanoassembling strategy to integrate multiple functions on one nanoscale probe (nanoprobe) with a cyclical on-off switchable sensing ability. The reversal of the nanoprobe can be rapidly achieved by converting the single-wavelength near-infrared (NIR) laser to two-way emissions by a lanthanum nanoparticle core that is sensitive to the light power density. Through regulating the NIR power density, the azobenzene derivative, which was doped in the surface of the lipid bilayer of the nanoprobe, can act as an "impeller" and "brake" for bio-benign activation and deactivation, respectively, of the nanoprobe in biological applications. A reduced nicotinamide adenine dinucleotide nanoprobe was constructed as the model to demonstrate precise and time-resolved monitoring of intracellular processes including cancerous glycolysis and ligand-induced enzymatic processes. We envision that this cyclical on-off switchable nanoprobe strategy will hold great promise for endowing universal chemoprobes with high precision and temporal resolution.


Subject(s)
Microscopy, Fluorescence/methods , Nanoparticles/chemistry , Spectroscopy, Near-Infrared/methods , Fluorescent Dyes , Humans
14.
Anal Chem ; 91(20): 13174-13182, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31545590

ABSTRACT

The monitoring of alkaline phosphatase (ALP) activity in different tissues is significant for disease diagnosis and therapy. However, the time-resolved in vivo sensing of ALP activity remained unresolved. Herein, a novel red-near-infrared fluorescent ALP probe (Cl2-BDCM-ALP) based on a dichloro-substituted dicyanomethylene-4H-chromene derivative was designed and synthesized with high fluorescence efficiency and stability under biological pH range. By using Cl2-BDCM-ALP, ALP activity under an acidic microenvironment such as a tumor site can be sensitively imaged, which cannot be achieved by some previously reported ALP probes. By further loading the Cl2-BDCM-ALP into a near-infrared (NIR) light-responsive nanocontainer, time-resolved long-term imaging of ALP activity was facilely achieved with noninvasive NIR light remote control. Time-resolved variation of ALP activity of the drug-induced acute liver injury mice was successfully monitored in vivo for the first time. This strategy holds great promise in the in situ ALP detection under a broad pH range with temporal resolution.


Subject(s)
Alkaline Phosphatase/analysis , Benzopyrans/chemistry , Fluorescent Dyes/chemistry , Metal Nanoparticles/chemistry , Acetaminophen/toxicity , Animals , Benzopyrans/chemical synthesis , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/enzymology , Female , Fluorescent Dyes/chemical synthesis , Humans , Mice, Inbred BALB C , Neoplasms/enzymology , Optical Imaging/methods , Thulium/chemistry , Ytterbium/chemistry , Yttrium/chemistry
15.
Fitoterapia ; 136: 104167, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31071435

ABSTRACT

Three new arylalkenyl α,ß-unsaturated δ-lactones, cryptobrachytones A-C (1-3), together with one known analogue kurzilactone (4), were isolated from the leaves and twigs of Cryptocarya brachythyrsa. Their structures were elucidated based on extensive spectroscopic data and electronic circular dichroism (ECD) analysis. All the isolates were evaluated in vitro for anti-proliferative activity against a panel of five human cancer cell lines and one human normal cell, respectively, and the results showed 1, 2 and 4 possessing significant selective cytotoxicity toward the human cancer cell lines with IC50 values from 5.41 to 15.43 µM. This is the first study for C. brachythyrsa.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cryptocarya/chemistry , Lactones/pharmacology , Plant Leaves/chemistry , Antineoplastic Agents, Phytogenic/isolation & purification , Cell Line, Tumor , China , Humans , Lactones/isolation & purification , Molecular Structure , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
16.
Anal Chim Acta ; 1057: 114-122, 2019 May 30.
Article in English | MEDLINE | ID: mdl-30832910

ABSTRACT

Organic-inorganic hybrid nanomaterial has gained much attention due to its excellent performances in bioanalysis and biomedicine. However, the preparation of DNA-inorganic hybrid nanomaterial with suitable size for cell uptake remains a huge challenge. Herein, a moderate biomineralization strategy for synthesis of Y-DNA@Cu3(PO4)2 (Y-DNA@CuP) hybrid nanoflowers is reported. Y-DNA with a loop structure is used as both the biomineralization template and the recognition unit for thymidine kinase 1 (TK1) mRNA. The Y-DNA probe can linearly response to TK1 mRNA target sequence in a range from 2 nM to 150 nM with the limit of detection as low as 0.56 nM. Interestingly, the presence of Y-DNA significantly decreases the size of Cu3(PO4)2 (CuP) particles, which allows them suitable for intracellular applications as gene nanocarriers. Once inside the cells, the hybrid nanoflowers dissolve and release the Y-DNA probes. Then, the intracellular TK1 mRNA hybridizes with the loop region of Y-DNA, which dissociates the Cy3-labeled loop strand and turns on the red fluorescence. Through the real-time imaging of the intracellular TK1 mRNA, the assessment of tumor cells before and after the treatment of drugs including ß-estradiol and tamoxifen is achieved.


Subject(s)
DNA/chemistry , Drug Carriers/chemistry , Nanostructures/chemistry , Optical Imaging/methods , Cell Line, Tumor , Cell Survival , Humans , Intracellular Space/metabolism , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Thymidine Kinase/genetics
17.
J Hazard Mater ; 368: 670-679, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30731367

ABSTRACT

In China, the wastewater produced after vanadate precipitation (AVP wastewater) from industrial vanadium extraction contains toxic V(V) and carcinogenic Cr(VI). When considering environmental protection and wastewater use, V(V) and Cr(VI) must be extracted and separated from the hazardous AVP wastewater. However, separating V(V) and Cr(VI) is difficult because of their highly similar physicochemical properties. Herein, we propose a novel anion exchange method based on the in situ selectively reductive desorption of Cr(VI) to separate and extract V(V) and Cr(VI) using a weak organic reductant (ethanol) to selectively reduce Cr(VI) anions and transform them into Cr3+ cations, while maintaining V(V) in a H2V10O284- anion form. We indicate that the efficient separation of Cr(VI) from V(V) can be attributed to selective Cr(VI) anion reduction via ethanol. We applied this anion exchange method to separate and recover Cr(VI) and V(V) in AVP wastewater with a Cr(VI) recovery of 95.59% and a V(V) recovery of 94.54%. The final Cr2O3 and V2O5 products had a purity of 98.03% and 96.82%, respectively. This study provides novel insights into the simultaneous separation and extraction of analog transition metals and a comprehensive method to use hazardous wastewater.

18.
RSC Adv ; 9(50): 29149-29153, 2019 Sep 13.
Article in English | MEDLINE | ID: mdl-35528423

ABSTRACT

The effect of the morphological chirality of inorganic TiO2 nanofibers on peptide assembly and cellular behaviors was investigated. Model peptide insulin maintains its native structure and served as a growth factor for promoting proliferation and differentiation of PC12 cells on the surface of right-handed TiO2. In contrast, insulin forms amyloid fibrils and loses its bioactivity on the left-handed TiO2.

19.
Nanotechnology ; 30(6): 065502, 2019 Feb 08.
Article in English | MEDLINE | ID: mdl-30523802

ABSTRACT

Fatty acids (FAs) are important dietary sources of fuel for animals and structural components for cells. The number, position and configuration of olefins in the alkyl chains play important roles in the impacts of FAs on human health. Currently, structural profiling of FAs in edible oils and fats is an important issue in nutrition industries and food safety. Due to the lack of distinct functional groups, it is extremely difficult to discriminate FAs with structural differences by facile and in situ sensing methods. A few chemosensors have been developed for shape selective sensing of FAs, but their capability and performance were still limited. Herein, for the first time, we proposed a multichannel Au nanosensor for visual and pattern-generating inspection of FAs based on the highly selective binding ability of Ag+ to olefinic bonds and Ag+ regulable color variation of Au nanoparticles. As a result, the nanosensor showed good selectivity for five FAs with subtle structural difference as low as 5 nM. By further deriving three channel signals in respect of color and color depth, a signature-like signal pattern could be generated by principal component analysis for each FA and even different FA mixtures such as edible oils. Hence, structural variation of FAs in edible hot pot oils with heat treatment was successfully monitored by this Au nanosensor over time. This sensor holds great promise in point-of-care inspection of edible oils and fats.


Subject(s)
Fatty Acids/analysis , Gold/chemistry , Nanoparticles/chemistry , Pattern Recognition, Automated , Colorimetry , Oxidation-Reduction , Plant Oils/analysis , Silver
20.
Mikrochim Acta ; 185(11): 512, 2018 10 20.
Article in English | MEDLINE | ID: mdl-30343484

ABSTRACT

A fluorescent array based on the use of saccharide-functionalized multicolored quantum dots (s-QDs) and of 4-mercaptophenylboronic acid-functionalized MoS2 nanosheets (PBA-MoS2) was constructed for multiple identification and quantitation of lectins and bacteria. In this array, the fluorescence of the s-QDs is quenched by the PBA-MoS2 nanosheets. In the presence of multiple lectins, s-QDs differentially detach from the surface of PBA-MoS2 nanosheets, producing distinct fluorescence response patterns due to both quenching and enhancement of fluorescence. By analyzing the fluorescence responses with linear discriminant analysis, multiple lectins and bacteria were accurately identified with 100% accuracy. The limits of detection of Concanavalin A, Pisum sativum agglutinin, Peanut agglutinin, and Ricius communis I agglutinin are as low as 3.7, 8.3, 4.2 and 3.9 nM, respectively. The array has further been evidenced to be potent for distinguishing and quantifying different bacterial species by recognizing their surface lectins. The detection limits of Escherichia coli and Enterococcus faecium are 87 and 66 cfu mL-1, respectively. Graphical abstract Schematic of a fluorometric array based on the use of saccharides-functionalized quantum dots (s-QDs) and 4-mercaptophenylboronic acid-functionalized MoS2 (PBA- MoS2) nanosheets. This array was successfully applied to simultaneously analysis of lectins, bacteria in real samples with high sensitivity and accuracy.


Subject(s)
Disulfides/chemistry , Enterococcus faecium/isolation & purification , Escherichia coli/isolation & purification , Fluorometry/instrumentation , Molybdenum/chemistry , Nanostructures/chemistry , Plant Lectins/analysis , Quantum Dots/chemistry , Boronic Acids/chemistry , Glycosylation , Limit of Detection , Models, Molecular , Molecular Conformation , Sulfhydryl Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...