Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Oncol Lett ; 26(2): 331, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37415630

ABSTRACT

Long non-coding RNA (lncRNA) PTCSC3 is characterized as a tumor suppressor in thyroid cancer and glioma. The present study aimed to investigate the role of PTCSC3 in triple-negative breast cancer (TNBC). A total of 82 patients with TNBC were enrolled in the present study. The results showed that PTCSC3 was downregulated, while lncRNA MIR100HG was upregulated in tumor tissues compared with that in adjacent non-cancerous tissues of patients with TNBC. The follow-up study showed that low expression levels of PTCSC3 and high expression levels of MIR100HG were closely associated with poor survival of patients with TNBC. The expression levels of MIR100HG were decreased with the clinic stages of TNBC, while the expression levels of MIR100HG showed the opposite trend. Correlation analysis showed that the expression levels of PTCSC3 and MIR100HG were significantly correlated in both tumor tissues and adjacent non-cancerous tissues. The overexpression of PTCSC3 inhibited the expression level of MIR100HG in TNBC cells, while the expression level of PTCSC3 was unaffected. Cell Counting Kit-8 and Annexin V-FITC Apoptosis flow cytometry assays showed that overexpression of PTCSC3 led to inhibition, while overexpression of MIR100HG led to the promotion of TNBC cells viability and inhibited apoptosis of TNBC cells. In addition, overexpression of MIR100HG attenuated the effects of PTCSC3 overexpression on cancer cell viability. However, the overexpression of PTCSC3 did not affect cancer cell migration and invasion. Western-blot analysis showed that PTCSC3 suppressed viability and promoted apoptosis of TNBC cells through the Hippo signaling pathway. Thus, the present study demonstrated that lncRNA PTCSC3 inhibits cancer cell viability and promotes cancer cell apoptosis in TNBC by downregulating MIR100HG.

2.
Huan Jing Ke Xue ; 43(8): 4292-4300, 2022 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-35971725

ABSTRACT

In order to improve the phytoextraction efficiency of Xanthium sibiricum on farmland soil that had been contaminated by Cd and As, this study explored the effects of chelating agents and organic acids (EDTA, SAP, CA, and MA) on the extraction of Cd and As heavy metals using X. sibiricum. The results showed that the four different chelating agents and organic acids had little effect on the biomass of the roots, stems, and leaves of X. sibiricum. However, they had different effects on the concentrations and accumulation of Cd and As in various organs of X. sibiricum. Compared with the those in the CK treatment, EDTA, SAP, CA, and MA significantly increased the Cd concentrations in the leaves of X. sibiricum by 44.1%, 32.4%, 41.2%, and 38.2% and the As concentrations in the roots of X. sibiricum by 89.6%, 7.4%, 94.8%, and 61.5%, respectively. The four treatments (EDTA, SAP, CA, and MA) improved the total Cd accumulation of X. sibiricum, with increasing ranges, respectively, of 70.2%, 29.4%, 28.9%, and 33.1%, and the As accumulation increased by 67.0%, 19.6%, 81.9%, and 40.8%, respectively, compared with that of the CK treatment. The four chelating agents and organic acids had different effects on the Cd and As bioconcentration factor and transfer factor of various organs of X. sibiricum. Treatments with EDTA, SAP, CA, and MA resulted in a decrease of 32.7%-38.2% in soil Cd concentrations and a decrease of 14.6%-20.5% in soil As concentrations. These four chelating agents can be used for enhancing the efficiency of extraction Cd and As heavy metals by X. sibiricum.


Subject(s)
Arsenic , Metals, Heavy , Soil Pollutants , Xanthium , Biodegradation, Environmental , Cadmium/analysis , Chelating Agents/pharmacology , Edetic Acid/pharmacology , Metals, Heavy/analysis , Soil , Soil Pollutants/analysis
3.
Chemosphere ; 247: 125850, 2020 May.
Article in English | MEDLINE | ID: mdl-31931314

ABSTRACT

Bioremediation of heavy metal-contaminated soil using metal-resistant microbes is a promising remediation technology. However, as exogenous bacteria sometimes struggle to survive and grow when introduced to new soils, it is important to develop appropriate carriers for microbial populations. In this study, we report a novel approach to remediating Cd-contaminated rice paddy soil using biochar-supported microbial cell composites (BMCs) produced from agricultural waste (cornstalks). Pot experiments showed that amendment with BMC was more efficient at reducing root and grain Cd content than pure bacteria, while improving soil Cd fractionation toward more stabilized and less labile forms. Bacteria in the BMC medium grew more readily with more abundant metabolites than those raised in free cells, probably because biochar provides shelter via porous structures (as confirmed by scanning electron microscopy) as well as additional nutrients. Overall, the improved long-term production of microbial biomass caused by BMC inoculation results in a higher remediation efficiency. Our results demonstrate the feasibility of using biochar as an appropriate carrier for metal-tolerant bacteria to remediate Cd-contaminated paddy fields.


Subject(s)
Agricultural Inoculants/metabolism , Biodegradation, Environmental , Cadmium/isolation & purification , Charcoal , Oryza/metabolism , Soil Pollutants/isolation & purification , Bacteria/metabolism , Biomass , Cadmium/analysis , Edible Grain/chemistry , Edible Grain/metabolism , Metals, Heavy/metabolism , Oryza/chemistry , Plant Structures/chemistry , Soil/chemistry , Soil Pollutants/analysis
4.
J Contam Hydrol ; 229: 103583, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31818435

ABSTRACT

Biological soil crusts (BSCs), which are ubiquitous in paddy fields, are known to remove pollutants from paddy fields systems. The Nano-TiO2 enhanced the removal of Cd(II) by BSC under acidic irrigation water was found, and its mechanism was investigated. After the addition of nano-TiO2, the Cd(II) removal efficiency of BSCS increased by 26.70% than that of pure BSCs, and the Nano-TiO2 induced faster removal velocity as well. Zeta potential and potentiometric titration results revealed that BSCs generated more negative charges and sites concentration after addition of Nano-TiO2 at acidic environment. The carboxyl and amino/hydroxyl groups were the main functional groups on BSC and the BSC + TiO2. The higher concentration of amino/hydroxyl groups in BSC + TiO2 (0.33 ± 0.08 mmol/g) was present than that of pristine BSCs (0.62 ± 0.02 mmol/g), and they were with similar concentration of phosphate groups and carboxyl groups. This result was attributed to the Nano-TiO2 stimulated the BSCs to produce more extracellular polysaccharides and proteins. Our findings would provide novel strategy for the removal of cadmium from acidic irrigation water.


Subject(s)
Cadmium/analysis , Soil , Adsorption , Titanium
5.
Environ Pollut ; 243(Pt A): 444-452, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30216877

ABSTRACT

Soil is a heterogeneous porous media that is comprised of a variety of organo-mineral aggregates. Sorption of heavy metals onto these composite solids is a key process that controls heavy metal mobility and fate in the natural environment. Pollution from a combination of heavy metals is common in soil, therefore, understanding the competitive binding behavior of metal ions to organo-mineral composites is important in order to predict metal mobility and fate. In this study, batch experiments were paired with spectroscopic studies to probe the sorption characteristics of ternary CdNiCu sorbates to a binary organo-goethite composite made with Bacillus cereus cells. Scanning electron microscopy shows that goethite nano-sized crystals are closely associated with the bacterial surfaces. Sorption experiments show a larger adsorptivity and affinity for Cu than Cd/Ni on goethite and B. cereus, and the goethite-B. cereus composite. X-ray photoelectron spectroscopy reveals that carboxylate and phosphate functional moieties present on the bacterial cell walls are primarily responsible for metal sorption to the goethite-B. cereus composite. Synchrotron-based X-ray fluorescence shows that Cu and Ni are predominately associated with the bacterial fraction of the goethite-B. cereus composite, whereas Cd is mainly associated with the goethite fraction. The findings of this research have important implications for predicting the mobility and fate of heavy metals in soil multi-component systems.


Subject(s)
Adsorption , Bacillus cereus/chemistry , Iron Compounds/chemistry , Metals, Heavy/analysis , Minerals/chemistry , Soil Microbiology , Bacillus cereus/ultrastructure , Binding, Competitive , Cadmium/analysis , Copper/analysis , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Nickel/analysis , Soil Pollutants/analysis
6.
Ecotoxicol Environ Saf ; 163: 223-229, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30055387

ABSTRACT

Bioremediation of heavy metal polluted soil using metal-resistant bacteria has received increasing attentions. In the present study, we isolated a heavy metal-resistant bacterial strain from a Cd-contaminated soil, and conducted pot experiments to evaluate the effect of bacterial inoculation in soil on soil Cd speciation, rice grain biomass and Cd accumulation. We find that the isolated bacterial strain is a Gram-negative bacterium, and named as Delftia sp. B9 based on the 16S rDNA gene sequence analysis. TEM-EDS manifests that Cd can be bioaccumulated inside cell, resulting in intracellular dissolution. The Cd contents of rice grain in the two rice cultivars (early and late rice) are all below the standard limit for Food Safety of People's Republic of China (0.2 mg/kg) after the treatment of both living and non-living cells. Non-living cells are more applicable than the use of living cells for the short time bioremediation. The average content of soil exchangeable fraction of Cd decreases whereas the residual fraction increases with bacterial inoculation. All our results suggest Delftia sp. B9 is able to the stabilization of Cd in soil and reduce Cd accumulation in rice grain, therefore, this strain is potentially suitable for the bioremediation of Cd-contaminated paddy soils.


Subject(s)
Cadmium/metabolism , Delftia/metabolism , Edible Grain/metabolism , Oryza/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Biodegradation, Environmental , Biomass , China , Edible Grain/growth & development , Metals, Heavy , Oryza/growth & development
7.
Genome Announc ; 5(32)2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28798172

ABSTRACT

The draft genome sequence of Methylocaldum sp. SAD2, a methanotrophic strain isolated from a hydrogen sulfide-rich anaerobic digester, is reported here. Strain SAD2 possesses genes for methane oxidation in the presence of H2S.

8.
Genome Announc ; 5(16)2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28428289

ABSTRACT

The draft genome sequence of Methylocaldum sp. 14B, an obligate methanotrophic strain isolated from solid-state anaerobic digestion systems, is reported here. Strain 14B possesses genes for methane oxidation and exhibited tolerance to H2S.

9.
Huan Jing Ke Xue ; 37(2): 734-9, 2016 Feb 15.
Article in Chinese | MEDLINE | ID: mdl-27363167

ABSTRACT

Owing to the strong ability to immobilize and hyperaccumulate some toxic heavy metals in contaminated soils, the biochar, lime and such as hyperaccumulator ramie received increasing interests from crops and environment safety in recent years. Outdoor pot experiment was conducted to compare the impacts of lime and biochar addition in paddy rice treatment, hyperaccumulator ramie and ramie combined with EDTA of plant Phytoremediation methods on soil available Cd dynamics in rainfall runoff and the mobility along soil profile, under both natural acid precipitation and acid soil conditions. The results showed that, biochar addition at a 2% mass ratio application amount significantly increased soil pH, while ramie with EDTA application obviously decreased soil pH compared to ramie monoculture. Within the same rainfall events, water soluble Cd concentration in surface runoff of ramie treatments was significantly higher than those of waterlogged rice treatments, and Cd concentration in runoff was obviously increased after EDTA addition, whereas lime at a 0.3% mass ratio application amount as additive had no obvious impact on soil pH and Cd speciation change, which may be due to the low application amount. During the whole experimental period , water soluble Cd concentration of rainfall runoff in spring was higher than that in summer, showing the same seasonal characteristics in all treatments. Biochar addition could significantly decrease available Cd content in 0-20 cm soil layer and with certain preferable persistency effects, whereas EDTA addition treatment obviously increased available Cd of 0-20 cm soil layer compared to other treatments, and obvious Cd element activation phenomenon in 20-40 cm soil layer was observed after EDTA addition. In conclusion, lime and biochar as environmental and friendly alkaline Cd immobilization materials showed lower environment risk to surface and ground receiving water, but attention should be paid to phytoremediation enhanced with EDTA or other organic acid before promotion and field application for heavy metals removal from contaminated soils.


Subject(s)
Agriculture , Cadmium/analysis , Soil Pollutants/analysis , Soil/chemistry , Biodegradation, Environmental , Calcium Compounds , Charcoal , Environmental Restoration and Remediation , Groundwater , Oryza , Oxides
10.
Ecotoxicology ; 21(3): 698-704, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22095162

ABSTRACT

Flocculation with clays is a promising and environmentally friendly way to remove algal blooms. Physiological responses of Microcystis aeruginosa NIES-843 under the stress of chitosan modified kaolinite (CMK) loading were first reported in this paper. Compared with the control, the contents of chlorophyll a (Chl a) and carotenoids showed no significant difference at a CMK loading of 40 mg/l, but the phycocyanin content was significant lower than the control at this loading level. The contents of Chl a, carotenoids, phycocyanin and allophycocyanin were all significantly lower than the control at 80 and 160 mg/l CMK, and the leakage of phycobilins occurred at these two loading levels suggesting that flocculation with CMK could cause the damage of cellular membranes. The activities of extracellular alkaline phosphatase activity (E-APA), superoxide dismutase (SOD) and catalase (CAT) were all dramatically boosted under the stress of CMK loading. The changes of cellular dehydrogenase activity exhibited the same trends as of Chl a and carotenoids, and it decreased to the levels of lower than detectable limits on 12 and 8th day at a CMK loading of 80 and 160 mg/l, respectively. These results indicated that flocculation with CMK could cause cell mortality of M. aeruginosa.


Subject(s)
Chelating Agents/pharmacology , Chitosan/pharmacology , Kaolin/pharmacology , Microcystis/drug effects , Water Purification/methods , Carotenoids/analysis , Carotenoids/metabolism , Chelating Agents/metabolism , Chitosan/metabolism , Chlorophyll/analysis , Chlorophyll/metabolism , Chlorophyll A , Enzymes/analysis , Enzymes/metabolism , Eutrophication , Kaolin/metabolism , Microbial Viability/drug effects , Microcystis/chemistry , Microcystis/metabolism , Phycocyanin/analysis , Phycocyanin/metabolism , Water Pollution, Chemical
11.
J Environ Sci (China) ; 18(4): 734-40, 2006.
Article in English | MEDLINE | ID: mdl-17078553

ABSTRACT

Soil properties, microbial communities and enzyme activities were studied in soil amended with replicase (RP)-transgenic or non-transgenic papaya under field conditions. Compared with non-transgenic papaya, significant differences (P<0.05) were observed in total nitrogen in soils grown with transgenic papaya. There were also significant differences (P<0.05) in the total number of colony forming units (CFUs) of bacteria, actinomycetes and fungi between soils amended with RP-transgenic plants and non-transgenic plants. Compared with non-transgenic papaya, the total CFUs of bacteria, actinomycetes and fungi in soil with transgenic papaya increased by 0.43-1.1, 0.21-0.80 and 0.46-0.73 times respectively. Significantly higher (P<0.05) CFUs of bacteria, actinomycetes and fungi resistant to kanamycin (Km) were obtained in soils with RP-transgenic papaya than those with non-transgenic papaya in all concentrations of Km. Higher resistance quotients for Kmr (kanamycin resistant) bacteria, actinomycetes and fungi were found in soil planted with RP-transgenic papaya, and the resistance quotients for Kmr bacteria, actinomycetes and fungi in soils with transgenic papaya increased 1.6-4.46, 0.63-2.5 and 0.75-2.30 times. RP-transgenic papaya and non-transgenic papaya produced significantly different enzyme activities in arylsulfatase (5.4-5.9x), polyphenol oxidase (0.7-1.4x), invertase (0.5-0.79x), cellulase (0.23-0.35x) and phosphodiesterase (0.16-0.2x). The former three soil enzymes appeared to be more sensitive to the transgenic papaya than the others, and could be useful parameters in assessing the effects of transgenic papaya. Transgenic papaya could alter soil chemical properties, enzyme activities and microbial communities.


Subject(s)
Actinomyces/growth & development , Anti-Bacterial Agents/pharmacology , Carica , Fungi/growth & development , Soil Microbiology , Bacteria/growth & development , Carica/enzymology , Carica/genetics , Carica/microbiology , Colony Count, Microbial , Drug Resistance, Fungal , Kanamycin/pharmacology , Microbial Sensitivity Tests , Nitrogen/analysis , Plants, Genetically Modified
12.
Yi Chuan ; 25(2): 181-4, 2003 Mar.
Article in Chinese | MEDLINE | ID: mdl-15639849

ABSTRACT

Virus resistance in field and molecular biological characterizations of the transgenes were analyzed for two lines of T(1) generation of transgenic papaya with the replicase mutant gene from papaya ringspot virus (PRV). The transgenic plants showed highly resistant or immune against PRV. Results indicated that the transgenes inherited to and expressed at RNA level in the progenies.

13.
Inorg Chem ; 37(9): 2255-2262, 1998 May 04.
Article in English | MEDLINE | ID: mdl-11670382

ABSTRACT

The binding of several lanthanide(III) ions to anthracycline antitumor antibiotics daunomycin and adriamycin in methanol and aqueous solutions has been studied by means of optical and 2D NMR (COSY, TOCSY, and EXSY) techniques. These results indicate that a 1:1 Yb(3+)-drug complex (1) is the predominant complex at a metal-to-ligand ratio <10 with slightly higher proton activities, e.g., approximately pH 4-5 in an aqueous solution. In the presence of a base, a 1:2 (2) or 1:3 (3) Yb(3+)-drug complex can be formed. In addition, a 2:1 complex (4) is formed when the metal-to-drug ratio is >25. These Yb(3+)-drug complexes undergo slow chemical exchange with each other relative to the NMR time scale. Therefore, 1D and 2D magnetization transfer experiments can be utilized for the assignment of the isotropically shifted signals arising from the drug nuclei in the various paramagnetic complexes. The spin-lattice (T(1)) relaxation times and solution magnetic susceptibilities of these Yb(3+)-drug complexes confirmed the binding of the metal ion to 11,12-beta-ketophenolate in all the complexes (except the second Yb(3+) in the 2:1 complex which binds to the 5,6-beta-ketophenolate). Several other lanthanide(III) ions Pr(3+), Eu(3+), and Dy(3+) show similar binding properties to daunomycin based on optical and NMR studies. The binding of Yb(3+) to daunomycin has a profound effect on the reduction potential of the drug, showing a decrease in the potential by 150 mV upon addition of 1 equiv of Yb(3+) to the drug solution. This observation indicates that metal ions must play a significant role in the action of these family of drugs in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...