Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 676: 101-109, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39018803

ABSTRACT

The Enhanced Permeability and Retention (EPR) effect, an elevated accumulation of drugs and nanoparticles in tumors versus in normal tissues, is a widely used concept in the field of cancer therapy. It assumes that the vasculature of solid tumors would possess abnormal, leaky endothelial cell barriers, allowing easy access of intravenous-delivered drugs and nanoparticles to tumor regions. However, the EPR effect is not always effective owing to the heterogeneity of tumor endothelium over time, location, and species. Herein, we introduce a unique nanoparticle-based approach, using MUC18-targeted gold nanorods coupled with mild hyperthermia, to specifically enhance tumor endothelial permeability. This improves the efficacy of traditional cancer therapy including photothermal therapy and anticancer drug delivery by increasing the transport of photo-absorbers and drugs across the tumor endothelium. Using single cell imaging tools and classic analytical approaches in molecular biology, we demonstrate that MUC18-targeted gold nanorods and mild hyperthermia enlarge the intercellular gaps of tumor endothelium by inducing circumferential actin remodeling, stress fiber formation, and cell contraction of adjacent endothelial cells. Considering MUC18 is overexpressed on a variety of tumor endothelium and cancer cells, this approach paves a new avenue to improve the efficacy of cancer therapy by actively enhancing the tumor endothelial permeability.

2.
J Transl Med ; 20(1): 174, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410343

ABSTRACT

BACKGROUND: Cerebral venous sinus thrombosis (CVST) is a rare neurovascular disorder with highly variable manifestations and clinical courses. Animal models properly matched to the clinical form of CVST are necessary for elucidating the pathophysiology of the disease. In this study, we aimed to establish a rat model that accurately recapitulates the clinical features of CVST in human patients. METHODS: This study consisted of a clinical analysis and animal experiments. Clinical data for two centres obtained between January 2016 and May 2021 were collected and analysed retrospectively. In addition, a Sprague-Dawley rat model of CVST was established by inserting a water-swellable rubber device into the superior sagittal sinus, following which imaging, histological, haematological, and behavioural tests were used to investigate pathophysiological changes. Principal component analysis and hierarchical clustering heatmaps were used to evaluate the similarity between the animal models and human patients. RESULTS: The imaging results revealed the possibility of vasogenic oedema in animal models. Haematological analysis indicated an inflammatory and hypercoagulable state. These findings were mostly matched with the retrospective clinical data. Pathological and serological tests further revealed brain parenchymal damage related to CVST in animal models. CONCLUSIONS: We successfully established a stable and reproducible rat model of CVST. The high similarity between clinical patients and animal models was verified via cluster analysis. This model may be useful for the study of CVST pathophysiology and potential therapies.


Subject(s)
Sinus Thrombosis, Intracranial , Animals , Humans , Models, Animal , Rats , Rats, Sprague-Dawley , Retrospective Studies , Sinus Thrombosis, Intracranial/diagnostic imaging , Sinus Thrombosis, Intracranial/pathology , Superior Sagittal Sinus/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...