Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Antioxid Redox Signal ; 40(7-9): 433-452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37265154

ABSTRACT

Aims: Studies demonstrated that oxidized fish oil (OFO) promoted oxidative stress and induced mitochondrial dysfunction and lipotoxicity, which attenuated beneficial effects of fish oil supplements in the treatment of nonalcoholic fatty liver disease (NAFLD). The current study was performed on yellow catfish, a good model to study NAFLD, and its hepatocytes to explore whether selenium (Se) could alleviate OFO-induced lipotoxicity via the inhibition of oxidative stress and determine its potential mechanism. Results: The analysis of triglycerides content, oxidative stress parameters, and histological and transmission electronic microscopy observation showed that high dietary Se supplementation alleviated OFO-induced lipotoxicity, oxidative stress, and mitochondrial injury and dysfunction. RNA-sequencing and immunoblotting analysis indicated that high dietary Se reduced OFO-induced decline of peroxisome-proliferator-activated receptor alpha (Pparα) and ubiquitin-specific protease 4 (Usp4) protein expression. High Se supplementation also alleviated OFO-induced reduction of thioredoxin reductase 2 (txnrd2) messenger RNA (mRNA) expression level and activity. The txnrd2 knockdown experiments revealed that txnrd2 mediated Se- and oxidized eicosapentaenoic acid (oxEPA)-induced changes of mitochondrial reactive oxygen species (mtROS) and further altered Usp4 mediated-deubiquitination and stabilization of Pparα, which, in turn, modulated mitochondrial fatty acid ß-oxidation and metabolism. Mechanistically, Usp4 deubiquitinated Pparα and ubiquitin-proteasome-mediated Pparα degradation contributed to oxidative stress-induced mitochondrial dysfunction. Innovation: These findings uncovered a previously unknown mechanism by which Se and OFO interacted to affect lipid metabolism via the Txnrd2-mtROS-Usp4-Pparα pathway, which provides the new target for NAFLD prevention and treatment. Conclusion: Se ameliorated OFO-induced lipotoxicity via the inhibition of mitochondrial oxidative stress, remodeling of Usp4-mediated deubiquitination, and stabilization of Pparα. Antioxid. Redox Signal. 40, 433-452.


Subject(s)
Mitochondrial Diseases , Non-alcoholic Fatty Liver Disease , Selenium , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Liver/metabolism , Fish Oils/pharmacology , Fish Oils/metabolism , Selenium/pharmacology , Selenium/metabolism , PPAR alpha/genetics , Oxidoreductases/metabolism , Oxidative Stress , Mitochondrial Diseases/metabolism
2.
Antioxidants (Basel) ; 12(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37759967

ABSTRACT

This research was conducted to investigate the effects of four dietary zinc (Zn) sources on growth performance, Zn metabolism, antioxidant capacity, endoplasmic reticulum (ER) stress, and tight junctions in the intestine of grass carp Ctenopharyngodon idella. Four Zn sources consisted of Zn dioxide nanoparticles (ZnO NPs), Zn sulfate heptahydrate (ZnSO4·7H2O), Zn lactate (Zn-Lac), and Zn glycine chelate (Zn-Gly), respectively. Grass carp with an initial body weight of 3.54 g/fish were fed one of four experimental diets for 8 weeks. Compared to inorganic Zn (ZnSO4·7H2O), grass carp fed the ZnO NPs and Zn-Gly diets exhibited better growth performance. Furthermore, grass carp fed the organic Zn (Zn-Lac and Zn-Gly) diets displayed enhanced Zn transport activity, improved intestinal histology, and increased intestinal tight junction-related genes expression compared to other groups. In comparison to other Zn sources, dietary ZnO NPs caused increased Zn deposition and damaged antioxidation capacity by suppressing antioxidant enzymatic activities and related gene expression in the intestine. Grass cap fed the ZnO NPs diet also exhibited lower mRNA abundance of endoplasmic reticulum (ER) stress- and tight junction-associated genes. According to the above findings, it can be concluded that dietary organic Zn addition (Zn-Lac and Zn-Gly) is more beneficial for intestinal health in grass carp compared to inorganic and nanoform Zn sources. These findings provide valuable insights into the application of organic Zn sources, specifically Zn-Lac and Zn-Gly, in the diets for grass carp and potentially for other fish species.

3.
Chemosphere ; 340: 139892, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611774

ABSTRACT

Enrofloxacin (ENR) is a kind of widespread hazardous pollutant on aquatic ecosystems and causes toxic effects, such as disorders of metabolism, on aquatic animals. However, its potential mechanisms at an environmental concentration on metabolic disorders of aquatic organisms remain unclear. Herin, we found that hepatic lipotoxicity was induced by ENR exposure, which led to ENR accumulation, oxidative stress, mitochondrial fragmentation, and fatty acid transfer blockage from lipid droplets into fragmented mitochondria. ENR-induced lipotoxicity and mitochondrial ß-oxidation down-regulation were mediated by reactive oxygen species (ROS). Moreover, dynamin-like protein 1 (DRP1) mediated ENR-induced mitochondrial fragmentation and changes of lipid metabolism. Mechanistically, ENR induced increment of DRP1 mitochondrial localization via dephosphorylating DRP1 at S627 and promoted its interaction with mitochondrial fission factor (MFF), leading to mitochondria fragmentation. For the first time, our study provides an innovative mechanistic link between hepatic lipotoxicity and mitochondrial fragmentation under ENR exposure, and thus identifies previously unknown mechanisms for the direct relationship between environmental ENR concentration and lipotoxicity in aquatic animals. Our study provides innovative insights for toxicological mechanisms and environmental risk assessments of antibiotics in aquatic environment.


Subject(s)
Ecosystem , Environmental Pollutants , Animals , Enrofloxacin , Down-Regulation , Environmental Pollutants/toxicity , Fatty Acids
4.
J Nutr Biochem ; 121: 109429, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37591442

ABSTRACT

Zinc (Zn) is a multipurpose trace element indispensable for vertebrates and possesses essential regulatory roles in lipid metabolism, but the fundamental mechanism remains largely unknown. In the current study, we found that a high-Zn diet significantly increased hepatic Zn content and influenced the expression of Zn transport-relevant genes. Dietary Zn addition facilitated lipolysis, inhibited lipogenesis, and controlled ß-catenin signal; Zn also promoted T-cell factor 7-like 2 (TCF7L2) to interact with ß-catenin and regulating its transcriptional activity, thereby inducing lipolysis and inhibiting lipogenesis; Zn-induced lipid degradation was mediated by histone deacetylase 3 (HDAC3) which was responsible for ß-catenin deacetylation and the regulation of ß-catenin signal under the Zn treatment. Mechanistically, Zn promoted lipid degradation via stimulating HDAC3-mediated deacetylation of ß-catenin at lysine 311 (K311), which enhanced the interaction between ß-catenin and TCF7L2 and then transcriptionally inhibited fatty acid synthase (FAS), 2-acylglycerol O-acyltransferase 2 (MOGAT2), and sterol regulatory element-binding protein 1 (SREBP1) expression, but elevated the mRNA abundance of adipose triglyceride lipase (ATGL), hormone-sensitive lipase a (HSLA) and carnitine palmitoyltransferase 1a1b (CPT1A1B). Overall, our research reveals a novel mechanism into the important roles of HDAC3/ß-catenin pathway in Zn promoting lipolysis and inhibiting lipogenesis, and highlights the essential roles of K311 deacetylation in ß-catenin actions and lipolytic metabolism, and accordingly provides novel insight into the prevention and treatment of steatosis in the vertebrates.

5.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166752, 2023 08.
Article in English | MEDLINE | ID: mdl-37182554

ABSTRACT

Excessive copper (Cu) intake leads to hepatic lipotoxicity disease, which has adverse effects on health, but the underlying mechanism is unclear. We found that Cu increased lipotoxicity by promoting Nrf2 recruitment to the ARE site in the promoters of five lipogenic genes (g6pd, 6pgd, me, icdh and pparγ). We also found that Cu affected the Nrf2 expression via different pathways: metal regulatory transcription factor 1 (MTF-1) mediated the Cu-induced Nrf2 transcriptional activation; Cu also enhanced the expression of Nrf2 by inhibiting the SP1 expression, which was achieved by inhibiting the negative regulator Fyn of Nrf2. These promoted the enrichment of Nrf2 in the nucleus and ultimately affected lipotoxicity. Thus, for the first time, we elucidated that Cu induced liver lipotoxicity disease by up-regulating Nrf2 expression via the MTF-1 activation and the inhibition of SP1/Fyn pathway. Our study elucidates the Cu-associated obesity and NAFLD for fish and possibly humans.


Subject(s)
Copper , Non-alcoholic Fatty Liver Disease , Humans , Animals , Copper/toxicity , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Non-alcoholic Fatty Liver Disease/genetics , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism
6.
J Nutr Biochem ; 117: 109337, 2023 07.
Article in English | MEDLINE | ID: mdl-36990368

ABSTRACT

Glycophagy is the autophagy degradation of glycogen. However, the regulatory mechanisms for glycophagy and glucose metabolism remain unexplored. Herein, we demonstrated that high-carbohydrate diet (HCD) and high glucose (HG) incubation induced glycogen accumulation, protein kinase B (AKT)1 expression and AKT1-dependent phosphorylation of forkhead transcription factor O1 (FOXO1) at Ser238 in the liver tissues and hepatocytes. The glucose-induced FOXO1 phosphorylation at Ser238 prevents FOXO1 entry into the nucleus and the recruitment to the GABA(A) receptor-associated protein like 1 (gabarapl1) promoter, reduces the gabarapl1 promoter activity, and inhibits glycophagy and glucose production. The glucose-dependent O-GlcNAcylation of AKT1 by O-GlcNAc transferase (OGT1) enhances the stability of AKT1 protein and promotes its binding with FOXO1. Moreover, the glycosylation of AKT1 is crucial for promoting FOXO1 nuclear translocation and inhibiting glycophagy. Our studies elucidate a novel mechanism for glycophagy inhibition by high carbohydrate and glucose via OGT1-AKT1-FOXO1Ser238 pathway in the liver tissues and hepatocytes, which provides critical insights into potential intervention strategies for glycogen storage disorders in vertebrates, as well as human beings.


Subject(s)
Glucose , Glycogen , Animals , Humans , Glucose/metabolism , Glycogen/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Liver Glycogen/metabolism , Liver/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Phosphorylation , Forkhead Box Protein O1/metabolism
7.
Environ Sci Technol ; 57(6): 2351-2361, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36728683

ABSTRACT

Excessive phosphorus (Pi) contributes to eutrophication in an aquatic environment, which threatens human and fish health. However, the mechanisms by which Pi overload influences aquatic animals remain largely unexplored. In the present study, Pi supplementation increased the Pi content, inhibited lipid accumulation and lipogenesis, and stimulated lipolysis in the liver. Pi supplementation increased the phosphorylation of glycogen synthase kinase-3 ß (GSK3ß) at serine 9 (S9) but inhibited the phosphorylation of GSK3α at tyrosine 279 (Y279), GSK3ß at tyrosine 216 (Y216), and peroxisome proliferator-activated receptor α (PPARα) at serine 84 (S84) and threonine 265 (T265). Pi supplementation also upregulated PPARα protein expression and stimulated its transcriptional activity, thereby inducing lipolysis. Pi suppressed GSK3ß activity and prevented GSK3ß, but not GSK3α, from interacting with PPARα, which in turn alleviated PPARα phosphorylation. GSK3ß-induced phosphorylation of PPARα was dependent on GSK3ß S9 dephosphorylation rather than Y216 phosphorylation. Mechanistically, underphosphorylation of PPARα mediated Pi-induced lipid degradation through transcriptionally activating adipose triglyceride lipase (atgl) and very long-chain-specific acyl-CoA dehydrogenase (acadvl). Collectively, our findings uncovered a new mechanism by which Pi facilitates lipolysis via the GSK3ß-PPARα pathway and highlighted the importance of S84 and T265 phosphorylation in PPARα action.


Subject(s)
Lipolysis , PPAR alpha , Animals , Humans , Glycogen Synthase Kinase 3 beta/metabolism , Lipids , Liver/metabolism , Phosphorylation , PPAR alpha/metabolism , Fishes
8.
Int J Mol Sci ; 23(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457022

ABSTRACT

The mitochondrial unfolded protein response (UPRmt) is known as a conservative mechanism in response to mitochondrial dysfunction. Thus, based on UPRmt, this study was conducted to determine the mechanism of a high-fat diet (HFD) inducing mitochondrial dysfunction and its role in stimulating hepatic lipid dysregulation. The choline-activated alleviating effect was also evaluated. In vivo, yellow catfish were fed three diets (control, HFD, and HFD + choline diet) for 10 weeks. In vitro, hepatocytes isolated from yellow catfish and the HepG2 cell line were cultured and incubated with fatty acid (FA) for 48 h. (1) HFD-induced mitochondrial dysfunction via SIRT3/mtHSP70-mediated UPRmt. HFD inhibited the subcellular localization of SIRT3 into the mitochondrion, resulting in the up-regulating of mtHSP70 acetylation via lysine residues 493 and 507. The mtHSP70 acetylation promoted the stability of mtHSP70, which then led to the UPRmt and further mitochondrial dysfunction. (2) SIRT3/mtHSP70-mediated UPRmt regulated HFD/FA-induced hepatic lipid dysregulation. SIRT3/mtHSP70-mediated UPRmt reduced FA ß-oxidation via mitochondrial dysfunction and then led to lipid dysregulation. Additionally, the mtHSP70-ACOX1 interaction was confirmed. (3) Choline alleviated HFD-induced UPRmt via up-regulating the localization of SIRT3 into the mitochondrion, which in turn led to the subsequent ameliorating effect on HFD-induced hepatic lipid dysregulation. Through SIRT3-mediated mtHSP70 deacetylation, dietary choline alleviates HFD-induced hepatic lipid dysregulation via UPRmt. This provides the first proof of acetylation regulating UPRmt and the crosstalk between UPRmt and FA ß-oxidation.


Subject(s)
Sirtuin 3 , Choline/metabolism , Choline/pharmacology , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Liver/metabolism , Sirtuin 3/genetics , Sirtuin 3/metabolism
9.
Biochim Biophys Acta Gene Regul Mech ; 1865(3): 194814, 2022 04.
Article in English | MEDLINE | ID: mdl-35439639

ABSTRACT

Mounting evidence showed that excess selenium (10.0-15.0-fold of adequate Se) intake caused severe hepatic lipid deposition in the vertebrate. However, the underlying mechanism remains unclear. The study was performed to elucidate the mechanism of Se supranutrition mediated-changes of lipid deposition and metabolism. We found that dietary excessive Se addition increased hepatic TGs and glucose contents, up-regulated lipogenic enzyme activities and reduced hepatic glycogen contents. Transcriptomic and immunoblotting analysis showed that Se supranutrition significantly influenced serine/threonine kinase 1 (AKT1)-forkhead box O3a (FOXO3a)-PYGL signaling and protein levels of SELENOF. Knockdown of SELENOF and PYGL by RNA interference revealed that the AKT1-FOXO3a-PYGL axis was critical for Se supranutrition-induced lipid accumulation. Moreover, Se supranutrition-induced lipid accumulation was via the increased DNA binding capacity of FOXO3a to PYGL promoter, which increased glycogenolysis, and accordingly promoted lipogenesis and lipid accumulation. Our finding provides new insight into the mechanism of Se supranutrition-induced lipid accumulation and suggests that SELENOF may be a therapeutic target for Se supranutrition induced-lipid disorders in the vertebrates.


Subject(s)
Glycogenolysis , Selenium , Animals , Lipids , Lipogenesis/genetics , Selenium/pharmacology , Selenoproteins/genetics
10.
Antioxid Redox Signal ; 37(7-9): 417-436, 2022 09.
Article in English | MEDLINE | ID: mdl-35293223

ABSTRACT

Aims: Excessive manganese (Mn) exposure is toxic, and induces lipid deposition, but the underlying mechanisms remain elusive. Herein, we explored how dietary Mn supplementation affects lipid deposition and metabolism in the intestine of vertebrates using the yellow catfish Pelteobagrus fulvidraco as the model. Results: High-Mn (H-Mn) diet increased intestinal Mn content, promoted lipid accumulation and lipogenesis, and inhibited lipolysis. In addition, it induced oxidative stress, upregulated metal-response element-binding transcription factor-1 (MTF-1), and peroxisome proliferator-activated receptor gamma (PPARγ) protein expression in the nucleus, induced PPARγ acetylation, and the interaction between PPARγ and retinoid X receptor alpha (RXRα), while it downregulated sirtuin 1 (SIRT1) expression and activity. Mechanistically, Mn activated the MTF-1/divalent metal transporter 1 (DMT1) pathway, increased Mn accumulation in the mitochondria, and induced oxidative stress. This in turn promoted lipid deposition via deacetylation of PPARγ at K339 by SIRT1. Subsequently, PPARγ mediated Mn-induced lipid accumulation through transcriptionally activating fatty acid translocase, stearoyl-CoA desaturase 1, and perilipin 2 promoters. Innovation: These studies uncover a previously unknown mechanism by which Mn induces lipid deposition in the intestine via the oxidative stress-SIRT1-PPARγ pathway. Conclusion: High dietary Mn intake activates MTF-1/DMT1 and oxidative stress pathways. Oxidative stress-mediated PPARγ deacetylation at K339 site contributes to increased lipid accumulation. Our results provided a direct link between Mn and lipid metabolism via the oxidative stress-SIRT1-PPARγ axis. Antioxid. Redox Signal. 37, 417-436.


Subject(s)
Catfishes , Sirtuin 1 , Animals , Catfishes/metabolism , Intestines , Lipid Metabolism , Lipids , Manganese/metabolism , Manganese/pharmacology , Oxidative Stress , PPAR gamma/metabolism , Sirtuin 1/metabolism
11.
Environ Sci Technol ; 56(4): 2407-2420, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35107266

ABSTRACT

Due to many special characteristics, zinc oxide nanoparticles (ZnO NPs) are widely used all over the world, leading to their wide distribution in the environment. However, the toxicities and mechanisms of environmental ZnO NP-induced changes of physiological processes and metabolism remain largely unknown. Here, we found that addition of dietary ZnO NPs disturbed hepatic Zn metabolism, increased hepatic Zn and lipid accumulation, downregulated lipolysis, induced oxidative stress, and activated mitophagy; N,N,N',N'-tetrakis (2-pyridylmethyl) ethylenediamine (TPEN, Zn2+ ions chelator) alleviated high ZnO NP-induced Zn and lipid accumulation, oxidative stress, and mitophagy. Mechanistically, the suppression of mitochondrial oxidative stress attenuated ZnO NP-activated mitophagy and ZnO NP-induced lipotoxicity. Taken together, our study elucidated that mitochondrial oxidative stress mediated ZnO NP-induced mitophagy and lipotoxicity; ZnO NPs could be dissociated to free Zn2+ ions, which partially contributed to ZnO NP-induced changes in oxidative stress, mitophagy, and lipid metabolism. Our study provides novel insights into the impacts and mechanism of ZnO NPs as harmful substances inducing lipotoxicity of aquatic organisms, and accordingly, metabolism-relevant parameters will be useful for the risk assessment of nanoparticle materials in the environment.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Animals , Fresh Water , Lipids , Metal Nanoparticles/toxicity , Mitochondria/metabolism , Mitophagy , Nanoparticles/toxicity , Oxidative Stress , Zinc Oxide/toxicity
12.
Free Radic Biol Med ; 180: 95-107, 2022 02 20.
Article in English | MEDLINE | ID: mdl-35045311

ABSTRACT

Ferroptosis is a regulated form of cell death induced by iron (Fe)-dependent lipid peroxidation. At present, the underlying molecular mechanisms remain elusive. Herein, we hypothesized that mitochondria and the NRF2 (transcription factor nuclear factor E2-related factor 2) are potential mediators of ferroptosis, considering their well-established involvement in the oxidative stress pathway. We found that a high iron diet increased hepatic iron content and promoted glutathione (GSH) depletion, lipid peroxidation and oxidative stress. Dietary iron overload also decreased mRNA and protein expression levels of glutathione peroxidase 4 (GPX4) and cystine-glutamate antiporter (SLC7A11), and increased mRNA and protein expression of acyl-CoA synthetase long-chain family member 4 (ACSL4), which are all markers of ferroptosis. Consistent with ferroptosis, iron overload promoted lipid peroxidation and the generation of mitochondrial reactive oxygen species (ROS), and decreased the mitochondrial membrane potential (MMP). Pre-treatment with deferoxamine mesylate (DFO, an iron chelator) alleviated ROS generation and lipid peroxidation, indicating a causative link between iron overload and lipid peroxidation. Suppression of mitochondrial oxidative stress attenuated ferroptosis. Experiments with HEK293T cells revealed that Fe-induced ferroptosis involved direct inhibition of NRF2 binding to antioxidant response elements (AREs) within the promoters of the gpx4 and slc7a11 genes, which in turn induced transcriptional silencing. In conclusion, our study provided a direct link between mitochondrial oxidative stress and ferroptosis via the NRF2-ARE pathway.


Subject(s)
Ferroptosis , NF-E2-Related Factor 2 , Ferroptosis/genetics , HEK293 Cells , Humans , Lipid Peroxidation , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/physiology
13.
Genes (Basel) ; 11(8)2020 07 29.
Article in English | MEDLINE | ID: mdl-32751150

ABSTRACT

Excessive fat deposition in the hepatocytes, associated with excess dietary fat intake, was related to the occurrence of fatty livers in fish. miR-101b plays the important roles in controlling lipid metabolism, but the underlying mechanism at the post-transcriptional level remains unclear. The purpose of this study is to explore the roles and mechanism of miR-101b-mediating lipid deposition and metabolism in yellow catfish Pelteobagrus fulvidraco. We found that miR-101b directly targeted fatty acid translocase (cd36), caspase9 (casp9) and autophagy-related gene 4A (atg4a). Furthermore, using palmitic acid (PA) or oleic acid (OA) to incubate the primary hepatocytes of yellow catfish, we demonstrated that miR-101b inversely regulated cd36, casp9, and atg4a expression at the transcriptional level; the inhibition of miR-101b aggravated fatty acids (FAs, PA or OA)-induced lipid accumulation, indicating that miR-101b mediated FAs-induced variations of lipid metabolism in yellow catfish. Taken together, our study gave novel insight into the regulatory mechanism of lipid deposition and metabolism and might provide potential targets for the prevention and treatment of fatty livers in fish.


Subject(s)
Catfishes/metabolism , Fatty Acids/metabolism , Fish Proteins/metabolism , Hepatocytes/metabolism , Lipid Metabolism/genetics , MicroRNAs/genetics , Animals , Autophagy , Catfishes/genetics , Fish Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
Chemosphere ; 246: 125792, 2020 May.
Article in English | MEDLINE | ID: mdl-31918101

ABSTRACT

Metal-responsive transcription factor-1 (MTF-1) and metallothionein (MT) expression are involved in metal homeostasis and detoxification. Here, we characterized the structure and functions of mtf-1 and mt promoters in yellow catfish Pelteobagrus fulvidraco. Many important binding sites of transcriptional factors, such as heat shock promoter element (HSE) and metal responsive element (MRE), were predicted on their promoter regions. Cu did not significantly influence the activity of mtf-1 promoter, but Zn increased its promoter activity. Cu and Zn induced the increase of mt promoter activity. HSE site of mtf-1 promoter was the functional binding locus responsible for Zn-induced mtf-1 transcriptional activation. Zn and Cu induced transcriptional activation of mt gene through the MTF-1- and MRE-dependent pathway. Using primary hepatocytes of yellow catfish, we found that Cu and Zn induced the mt expression; Cu did not significantly influence the mRNA and total protein levels of MTF-1, but Zn up-regulated its mRNA and total protein expression. Both Zn and Cu treatment also up-regulated MTF-1 nuclear protein expression, which in turn increased the mt expression. Taken together, these findings delineated the transcriptional regulation of MT and MTF-1 under Zn or Cu treatments, and provided some mechanisms for the regulation of Cu and Zn homeostasis in vertebrates.


Subject(s)
Copper/toxicity , Metallothionein/metabolism , Water Pollutants, Chemical/metabolism , Zinc/toxicity , Animals , Binding Sites , Catfishes/metabolism , Cell Nucleus/metabolism , Copper/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation , Metallothionein/genetics , Metals/metabolism , Promoter Regions, Genetic , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Up-Regulation , Zinc/metabolism , Transcription Factor MTF-1
15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 24(1): 30-5, 2016 Feb.
Article in Chinese | MEDLINE | ID: mdl-26913389

ABSTRACT

OBJECTIVE: To analyze the coagulation function and relevant factors of adults patients with acute lymphoblastic leukemia treated with pegasparase (PEG-ASP) or L-asaraginase (L-ASP). METHODS: The clinical features of 153 patients with acute lymphoblastic leukemia (ALL) received L-ASP or PEG-ASP in our hospital from January 2010 to January 2015 year were analyzed retrospectively. Among 153 patients, 108 patients received L-ASP treatment and 45 patients received PEG-ASP treatment. The change of coagulation function and the incidence of complications of 2 treated groups were compared, and the influence of differenent using time of L-ASP on above mentioned factors were analyzed. RESULTS: The age, sex, white blood cell count (WBC) at diagnosis, subtype and risk factors of disease, total effective rate and complication rates showed no significant difference in the 2 groups (P > 0.05). The total infusion of fresh frozen plasma (FFP), cryoprecipitate and fibrinogen (FIB) also showed no significant difference (P = 0.12, 0.65, 0.09). FIB levels decreased slower after treatment of PEG-ASP (9.49 vs 6.90) (P = 0.000) than that after treatment of L-ASP. When L-ASP used at interval, FIB level decreased slower than that of continuous use. However, the risk of bleeding is higher when used at interval early (P = 0.01, 0.013). CONCLUSION: Using PEG-ASP can better monitor the coagulation function than L-ASP. L-ASP used at interval can monitor the coagulation function easily, but its early use may cause an increased incidence of complications.


Subject(s)
Antineoplastic Agents/therapeutic use , Asparaginase/therapeutic use , Blood Coagulation/drug effects , Polyethylene Glycols/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Adult , Fibrinogen/analysis , Hemorrhage , Humans , Leukocyte Count , Retrospective Studies , Risk Factors
16.
J Chromatogr A ; 1216(1): 106-12, 2009 Jan 02.
Article in English | MEDLINE | ID: mdl-19062023

ABSTRACT

A fast and reliable HPLC method for the simultaneous separation of anthocyanins and flavonols in lotus petals was developed based on the study of four candidate solvent systems. Fifteen flavonoids were identified by high-performance liquid chromatography with photodiode array detection/mass spectrometry. Among them, two anthocyanins and nine flavonols were discovered in lotus petals for the first time. This work is valuable for both the hybrid breeding on lotus oriented to flower color and the utilization of lotus petals as functional food materials.


Subject(s)
Anthocyanins/analysis , Chromatography, High Pressure Liquid/methods , Flavonols/analysis , Nelumbo/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/instrumentation , Flowers/chemistry , Plant Extracts/analysis , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...