Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Reprod Dev ; 69(2): 78-86, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36740274

ABSTRACT

RAD2lL and REC8, meiosis-specific paralogs of the canonical cohesin subunit RAD21, are essential for proper formation of axial/lateral elements of the synaptonemal complex, synapsis of homologous chromosomes, and crossover recombination in mammalian meiosis. However, how many meiotic cohesins are present in germ cells has not been investigated because of the lack of an appropriate method of analysis. In the present study, to examine the intracellular amount of meiotic cohesins, we generated two strains of knock-in (KI) mice that expressed a 3×FLAG-tag at the C-terminus of RAD21L or REC8 protein using the CRISPR/Cas9 genome editing system. Both KI mice were fertile. Western blot analyses and immunocytochemical studies revealed that expression levels and localization patterns of both RAD21L-3×FLAG and REC8-3×FLAG in KI mice were similar to those in wild-type mice. After confirming that tagging of endogenous RAD21L and REC8 with 3×FLAG did not affect their expression profiles, we evaluated the levels of RAD21L-3×FLAG and REC8-3×FLAG in the testes of 2-week-old mice in which only RAD21L and REC8 but little RAD21 are expressed in the meiocytes. By comparing the band intensities of testicular RAD21L-3×FLAG and REC8-3×FLAG with 3×FLAG-tagged recombinant proteins of known concentrations in western blot analysis, we found that there were approximately 413,000 RAD21L and 453,000 REC8 molecules per spermatocyte in the early stages of prophase I. These findings provide new insights into the role played by cohesins in the process of meiotic chromosome organization in mammalian germ cells.


Subject(s)
Nuclear Proteins , Spermatocytes , Animals , Male , Mice , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromosomal Proteins, Non-Histone/chemistry , Meiosis , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phosphoproteins/genetics , Spermatocytes/metabolism , Cohesins
2.
Fertil Steril ; 117(1): 213-220, 2022 01.
Article in English | MEDLINE | ID: mdl-34548166

ABSTRACT

OBJECTIVE: To examine the cause of monopronucleated zygote (1PN) formation that includes both maternal and paternal genomes. DESIGN: Retrospective cohort study. SETTING: Private fertility clinic. PATIENT(S): A total of 44 1PN and 726 2-pronuclear zygotes from 702 patients were observed using 2 different time-lapse observation systems. INTERVENTION(S): Previously recorded time lapse data were reviewed to examine the mechanism of 1PN formation. MAIN OUTCOME MEASURE(S): The distance between the position of the second polar body extrusion and the fertilization cone or epicenter/starting position of the cytoplasmic wave was measured, and the consequent data were analyzed. Cytoplasmic waves were confirmed using vector analysis software. RESULT(S): The cut-off value for the difference in the distance between the position of the second polar body extrusion and the fertilization cone or the epicenter/starting position of the cytoplasmic wave was 17 µm (AUC: 0.987, 95% CI: 0.976-0.999) for the Embryo Scope and 18 µm (AUC: 0.972, 95% CI: 0.955-0.988) for the iBIS time-lapse observation systems. CONCLUSION(S): In this study, it was found with a high degree of accuracy that a monopronucleus is formed when the fusion of the sperm takes place within 18 µm from the point of the second polar body extrusion. The theoretical chance of 1PN occurrence after in vitro fertilization is 2.7% when the sperm is considered to be fused anywhere in the plasma membrane of an oocyte.


Subject(s)
Fertilization in Vitro , Genome, Human , Zygote/physiology , Adult , Cell Nucleus/genetics , Cohort Studies , Cytoplasm/genetics , Cytoplasm/metabolism , Embryonic Development/genetics , Female , Humans , Male , Polar Bodies/metabolism , Retrospective Studies , Sex Chromosomes/genetics , Sperm Injections, Intracytoplasmic , Time-Lapse Imaging , Zygote/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...