Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38203121

ABSTRACT

This paper presents an image registration method specifically designed for a star sensor equipped with three complementary metal oxide semiconductor (CMOS) detectors. Its purpose is to register the red-, green-, and blue-channel star images acquired from three CMOS detectors, assuring the precision of star image fusion and centroid extraction in subsequent stages. This study starts with a theoretical analysis aimed at investigating the effect of inconsistent three-channel imaging parameters on the position of feature points. Based on this analysis, this paper establishes a registration model for transforming the red- and blue-channel star images into the green channel's coordinate system. Subsequently, the method estimates model parameters by finding a nonlinear least-squares solution. The experimental results demonstrate the correctness of the theoretical analysis and the proposed registration method. This method can achieve subpixel alignment accuracy in both the x and y directions, thus effectively ensuring the performance of subsequent operation steps in the 3CMOS star sensor.

2.
Appl Opt ; 61(20): 5859-5868, 2022 Jul 10.
Article in English | MEDLINE | ID: mdl-36255823

ABSTRACT

The wide field of view (FOV) of traditional star sensor optical systems restricts the ability to suppress atmospheric background. An optical imaging system for an all-time star sensor based on FOV gated technology is proposed. In this system, a wide FOV telescope is used to observe a large sky area containing multiple stars. A microlens and microshutter array is employed to subdivide the wide FOV and gate a narrow FOV to suppress atmospheric background radiation. Assisted by a common imaging lens, each set of microlens and microshutter elements corresponds to a FOV gated imaging channel. With the rapid switching of gated FOV, multiple stellar images are obtained on a common detection during daytime. As an example, a FOV gated optical imaging system with 0.4° gated FOV and 61 imaging channels is designed. In addition, a simplified prototype is developed, and a preliminary experiment of FOV gated imaging is performed near the ground. The results verify the capability of multiple stellar detections during daytime. The proposed optical imaging system has a strong capability of suppressing atmospheric background radiation and provides sufficient FOV gated imaging channels to enhance the probability of detecting multiple stars. It provides an effective technical way to develop all-time star sensors based on star pattern recognition and enables a completely autonomous attitude determination possible for platforms inside the atmosphere during daytime.


Subject(s)
Lenses , Optical Devices , Optical Imaging , Technology
3.
Opt Express ; 29(10): 15478-15496, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33985247

ABSTRACT

As the star sensor works under high dynamic conditions, the spot formed by the star on the imaging plane will become a tail, which directly reduces the accuracy of centroid positioning. In addition, the imaging quality of the star sensor is seriously hit by the rolling shutter effect in the rolling shutter exposure mode, which further increases positioning error. Considering the diffusion radius and the dynamic tailing of the star spot, the imaging trajectory and the energy distribution models of the star spot under the rolling shutter exposure mode are established in this paper. Furthermore, based on the purposed models, the influence of the starting positions of stars and the dispersion of star spots to the centroid positioning error are analyzed by numerical simulation respectively, from which the variation laws of the two kinds of errors are obtained. Then, the laboratory experiments are implemented to evaluate the latter error; it indicates from the experimental results that the variation of the latter error is consistent with the simulation results, which is simultaneously proved that it cannot be ignored in practical engineering application. These results can be a valuable reference for developing a high precision star sensor. The models proposed in this paper can describe the star imaging process and evaluate the centroid positioning accuracy under the roller shutter exposure mode effectively, which lays a foundation for further eliminating the rolling shutter effect in the following research and improving the dynamic performance of star sensors.

4.
Sensors (Basel) ; 20(19)2020 Oct 04.
Article in English | MEDLINE | ID: mdl-33020392

ABSTRACT

To achieve photogrammetry without ground control points (GCPs), the precise measurement of the exterior orientation elements for the remote sensing camera is particularly important. Currently, the satellites are equipped with a GPS receiver, so that the accuracy of the line elements of the exterior orientation elements could reach centimeter-level. Furthermore, the high-precision angle elements of the exterior orientation elements could be obtained through a star camera which provides the direction reference in the inertial coordinate system and star images. Due to the stress release during the launch and the changes of the thermal environment, the installation matrix is variable and needs to be recalibrated. Hence, we estimate the cosine angle vector invariance of a remote sensing camera and star camera which are independent of attitude, and then we deal with long-term on-orbit data by using batch processing to realize the accurate calibration of the installation matrix. This method not only removes the coupling of attitude and installation matrix, but also reduces the conversion error of multiple coordinate systems. Finally, the geo-positioning accuracy in planimetry is remarkably higher than the conventional method in the simulation results.

5.
Sensors (Basel) ; 19(13)2019 Jul 04.
Article in English | MEDLINE | ID: mdl-31277512

ABSTRACT

As an important development direction of star sensor technology, the All-Time star sensor technology can expand the application of star sensors to flight platforms inside the atmosphere. Due to intense atmospheric background radiation during the daytime, the commonly used star sensors operating in the visible wavelength range are significantly limited in their ability to detect stars, and hence the All-Time star sensor technology which is based on the shortwave infrared (SWIR) imaging system has become an effective research direction. All-Time star sensor detection capability is significantly affected by observation conditions and, therefore, an optimized selection of optical parameters, which mainly includes the field of view (FOV) and the detection wavelength band, can effectively improve the detection performance of All-Time star sensors under harsh observation conditions. This paper uses the model simulation method to analyze and optimize the optical parameters under various observation conditions in a high-altitude environment. A main parameter among those discussed is the analysis of detection band optimization based on the SWIR band. Due to the huge cost constraints of high-altitude experiments, we conducted experiments near the ground to verify the effectiveness of the detection band selection and the correctness of the SWIR star sensor detection model, which thereby proved that the optimization of the optical parameters for high altitudes was effective and could be used as a reference.

6.
Rev Sci Instrum ; 89(7): 075003, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30068107

ABSTRACT

As an important part of All-Time star sensor design, the generation of the short-wave infrared (SWIR) guide star catalog is crucial to the system performance. The generation process needs estimation of the instrument magnitude and the guide star selection. Different from the commonly used star sensors, since the SWIR band is far away from the visual band and the detectable magnitude limit of the All-Time star sensor is dynamically changing as the observation conditions vary, the current methods of estimating the instrument magnitude cannot be directly applied and the catalog obtained through the current reduction methods that mainly aimed at improving the distribution uniformity cannot ensure enough stars measured in the field of view under strong sky background radiation. To solve the problems, we propose a method for guide star catalog generation for the All-Time star sensor. First, through the specific analysis of the spectral response curves of the SWIR detector and 2MASS detection bandpasses, the method of estimating instrument magnitudes for the All-Time sensor is determined. Subsequently, dynamic detectable magnitude limits are determined through the signal-to-noise model and the atmospheric background radiation intensity analysis. Based on the dynamic detectable magnitude limits, a reduction method is proposed. The simulation experiment results indicate that the RMS error of the estimation of instrument magnitude is 0.075. Compared to the magnitude filtering method, the guide star catalog obtained through our method can guarantee the completeness, besides, the global distribution uniformity increases by 2.2 times and the local distribution uniformity increases by 10.7 times.

7.
Sensors (Basel) ; 18(9)2018 Aug 28.
Article in English | MEDLINE | ID: mdl-30154307

ABSTRACT

The most accurate star centroiding method for star sensors is the Gaussian fitting (GF) algorithm, because the intensity distribution of a star spot conforms to the Gaussian function, but the computational complexity of GF is too high for real-time applications. In this paper, we develop the fast Gaussian fitting method (FGF), which approximates the solution of the GF in a closed-form, thus significantly speeding up the GF algorithm. Based on the fast Gaussian fitting method, a novel star centroiding algorithm is proposed, which sequentially performs the FGF twice to calculate the star centroid: the first FGF step roughly calculates the Gaussian parameters of a star spot and the noise intensity of each pixel; subsequently the second FGF accurately calculates the star centroid utilizing the noise intensity provided in the first step. In this way, the proposed algorithm achieves both high accuracy and high efficiency. Both simulated star images and star sensor images are used to verify the performance of the algorithm. Experimental results show that the accuracy of the proposed algorithm is almost the same as the GF algorithm, higher than most existing centroiding algorithms, meanwhile, the proposed algorithm is about 15 times faster than the GF algorithm, making it suitable for real-time applications.

8.
Sensors (Basel) ; 17(8)2017 Aug 21.
Article in English | MEDLINE | ID: mdl-28825684

ABSTRACT

Efficiency and reliability are key issues when a star sensor operates in tracking mode. In the case of high attitude dynamics, the performance of existing attitude tracking algorithms degenerates rapidly. In this paper an extended Kalman filtering-based attitude tracking algorithm is presented. The star sensor is modeled as a nonlinear stochastic system with the state estimate providing the three degree-of-freedom attitude quaternion and angular velocity. The star positions in the star image are predicted and measured to estimate the optimal attitude. Furthermore, all the cataloged stars observed in the sensor field-of-view according the predicted image motion are accessed using a catalog partition table to speed up the tracking, called star mapping. Software simulation and night-sky experiment are performed to validate the efficiency and reliability of the proposed method.

9.
Rev Sci Instrum ; 88(4): 043101, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28456261

ABSTRACT

On-orbit calibration is aimed at revising the star trackers' measurement model parameters and maintaining its attitude accuracy. The performance of existing calibration methods is quite poor. Among all the model parameters, the estimation of the principal point location is very challenging due to its vulnerability against measurement errors, yet, that it is the only parameter depicting the optical axis' projecting position on the image plane makes it of great significance. Its estimation error adds fixed bias to the output attitudes. Based on the criterion of vector pattern match, an on-orbit calibration method is proposed. The principal point location is estimated according to the criterion first. The other model parameters are updated by maximum likelihood method, and measures of multiple succeeding frames optimization and star density weight are adopted in the method to guarantee the estimation of robustness. Simulation and night sky observation results proved the validity of the proposed method. In the simulation with a poor initial guess of the principal point location, novel method's result is better than the least square method and Samaan's method.

10.
Sensors (Basel) ; 15(3): 4643-57, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25723142

ABSTRACT

The presented movable vision measurement for the three-dimensional (3D) surface of a large-sized object has the advantages of system simplicity, low cost, and high accuracy. Aiming at addressing the problems of existing movable vision measurement methods, a more suitable method for large-sized products on industrial sites is introduced in this paper. A raster binocular vision sensor and a wide-field camera are combined to form a 3D scanning sensor. During measurement, several planar targets are placed around the object to be measured. With the planar target as an intermediary, the local 3D data measured by the scanning sensor are integrated into the global coordinate system. The effectiveness of the proposed method is verified through physical experiments.

11.
Sensors (Basel) ; 14(3): 4914-31, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24618776

ABSTRACT

Under highly dynamic conditions, the star-spots on the image sensor of a star tracker move across many pixels during the exposure time, which will reduce star detection sensitivity and increase star location errors. However, this kind of effect can be compensated well by setting an appropriate exposure time. This paper focuses on how exposure time affects the star tracker under highly dynamic conditions and how to determine the most appropriate exposure time for this case. Firstly, the effect of exposure time on star detection sensitivity is analyzed by establishing the dynamic star-spot imaging model. Then the star location error is deduced based on the error analysis of the sub-pixel centroiding algorithm. Combining these analyses, the effect of exposure time on attitude accuracy is finally determined. Some simulations are carried out to validate these effects, and the results show that there are different optimal exposure times for different angular velocities of a star tracker with a given configuration. In addition, the results of night sky experiments using a real star tracker agree with the simulation results. The summarized regularities in this paper should prove helpful in the system design and dynamic performance evaluation of the highly dynamic star trackers.

12.
Sensors (Basel) ; 13(3): 3217-31, 2013 Mar 07.
Article in English | MEDLINE | ID: mdl-23470486

ABSTRACT

Error factors in the encoded sun sensor (ESS) are analyzed and simulated. Based on the analysis results, an ESS error compensation model containing structural errors and fine-code algorithm errors is established, and the corresponding calibration method for model parameters is proposed. As external parameters, installation deviation between ESS and calibration equipment are introduced to the ESS calibration model, so that the model parameters can be calibrated accurately. The experimental results show that within plus/minus 60 degree of incident angle, the ESS measurement accuracy after compensation is three times higher on average than that before compensation.


Subject(s)
Calibration , Satellite Communications/instrumentation , Solar System , Algorithms , Humans
13.
J Opt Soc Am A Opt Image Sci Vis ; 27(12): 2638-47, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21119749

ABSTRACT

The elongated imaging track pertaining to a star spot recorded in the image sensor of a star tracker will diffuse over several pixels at a high angular velocity, leading to an inaccurate, even false, attitude value. A computer simulation of the attitude determination from a dynamic star tracker is developed first, based on a dynamic mathematical model of the star-spot imaging and an efficiency validation of the star centroiding algorithm in the dynamic condition. Then major error sources affecting the attitude accuracy in the dynamic condition are analyzed and discussed systematically based on the simulation results. A mathematical model calculating the average star number detected in the field of view is also deduced, using simulation results and signal processing theory, with image trailing ranging from 0 to 20 pixels during exposure. The summarized regularity is helpful in the system design and accuracy evaluation of a star tracker.

SELECTION OF CITATIONS
SEARCH DETAIL
...