Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 16(23): 30478-30484, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38825762

ABSTRACT

Low-noise, high-performance long-wave infrared detectors play a crucial role in diverse applications, including in the industrial, security, and medical fields. However, the current performance of long-wave detectors is constrained by the noise associated with narrow bandgaps. Therefore, exploring novel heterostructures for long-wavelength infrared detection is advantageous for the development of compact and high-performance infrared sensing. In this investigation, we present a MoS2/type II superlattice mixed-dimensional van der Waals barrier long-wave infrared detector (Mixed-vdWH). Through the design of the valence band barrier, substantial suppression of device dark noise is achieved, resulting in 2 orders of magnitude reduction in dark current. The device exhibits outstanding performance, with D* reaching 4 × 1010 Jones. This integration approach synergizes the distinctive properties of two-dimensional layered materials (2DLM) with the well-established processing techniques of traditional three-dimensional semiconductor materials, offering a compelling avenue for the large-scale integration of 2DLM.

2.
ACS Appl Mater Interfaces ; 16(17): 22632-22640, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38642041

ABSTRACT

Dirac semimetals have demonstrated significant attraction in the field of optoelectronics due to their unique bandgap structure and high carrier mobility. Combining them with classical semiconductor materials to form heterojunctions enables broadband optoelectronic conversion at room temperature. However, the low light absorption of layered Dirac semimetals substantially limits the device's responsivity in the infrared band. Herein, a three-dimensional (3D) heterostructure, composed of silicon nanopillars (SiNPs) and a conformal PtTe2 film, is proposed and demonstrated to enhance the photoresponsivity for uncooled broadband detection. The light trapping effect in the 3D heterostructure efficiently promotes the interaction between light and PtTe2, while also enhancing the light absorption efficiency of silicon, which enables the enhancement of the device responsivity across a broadband spectrum. Experimentally, the PtTe2-SiNPs heterojunction device demonstrates excellent photoelectric conversion behavior across the visible, near-infrared, and long-wave infrared (LWIR) bands, with its responsivity demonstrating an order-of-magnitude improvement compared to the counterparts with planar silicon heterojunctions. Under 11 µm laser irradiation, the noise equivalent power (NEP) can reach 1.76 nW·Hz-1/2 (@1 kHz). These findings offer a strategic approach to the design and fabrication of high-performance broadband photodetectors based on Dirac semimetals.

3.
Innovation (Camb) ; 5(3): 100600, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38510070

ABSTRACT

Internal photoemission is a prominent branch of the photoelectric effect and has emerged as a viable method for detecting photons with energies below the semiconductor bandgap. This breakthrough has played a significant role in accelerating the development of infrared imaging in one chip with state-of-the-art silicon techniques. However, the performance of these Schottky infrared detectors is currently hindered by the limit of internal photoemission; specifically, a low Schottky barrier height is inevitable for the detection of low-energy infrared photons. Herein, a distinct paradigm of Schottky infrared detectors is proposed to overcome the internal photoemission limit by introducing an optically tunable barrier. This device uses an infrared absorbing material-sensitized Schottky diode, assisted by the highly adjustable Fermi level of graphene, which subtly decouples the photon energy from the Schottky barrier height. Correspondingly, a broadband photoresponse spanning from ultraviolet to mid-wave infrared is achieved, with a high specific detectivity of 9.83 × 1010 cm Hz1/2 W-1 at 2,700 nm and an excellent specific detectivity of 7.2 × 109 cm Hz1/2 W-1 at room temperature under blackbody radiation. These results address a key challenge in internal photoemission and hold great promise for the development of the Schottky infrared detector with high sensitivity and room temperature operation.

4.
Nat Commun ; 15(1): 1225, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38336952

ABSTRACT

High quantum efficiency and wide-band detection capability are the major thrusts of infrared sensing technology. However, bulk materials with high efficiency have consistently encountered challenges in integration and operational complexity. Meanwhile, two-dimensional (2D) semimetal materials with unique zero-bandgap structures are constrained by the bottleneck of intrinsic quantum efficiency. Here, we report a near-mid infrared ultra-miniaturized graphene photodetector with configurable 2D potential well. The 2D potential well constructed by dielectric structures can spatially (laterally and vertically) produce a strong trapping force on the photogenerated carriers in graphene and inhibit their recombination, thereby improving the external quantum efficiency (EQE) and photogain of the device with wavelength-immunity, which enable a high responsivity of 0.2 A/W-38 A/W across a broad infrared detection band from 1.55 to 11 µm. Thereafter, a room-temperature detectivity approaching 1 × 109 cm Hz1/2 W-1 is obtained under blackbody radiation. Furthermore, a synergistic effect of electric and light field in the 2D potential well enables high-efficiency polarization-sensitive detection at tunable wavelengths. Our strategy opens up alternative possibilities for easy fabrication, high-performance and multifunctional infrared photodetectors.

5.
Sci Adv ; 10(7): eadk8199, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363832

ABSTRACT

Serving as the "eyes" and "ears" of the Internet of Things, optical and acoustic sensors are the fundamental components in hardware systems. Nowadays, mainstream hardware systems, often comprising numerous discrete sensors, conversion modules, and processing units, tend to result in complex architectures that are less efficient compared to human sensory pathways. Here, a visual-audio photodetector inspired by the human perception system is proposed to enable all-in-one visual and acoustic signal detection with computing capability. This device not only captures light but also optically records sound waves, thus achieving "watching" and "listening" within a single unit. The gate-tunable positive, negative, and zero photoresponses lead to highly programmable responsivities. This programmability enables the execution of diverse functions, including visual feature extraction, object classification, and sound wave manipulation. These results showcase the potential of expanding perception approaches in neuromorphic devices, opening up new possibilities to craft intelligent and compact hardware systems.

6.
Adv Mater ; 36(4): e2304855, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37572037

ABSTRACT

Polycrystalline optoelectronic materials are widely used for photoelectric signal conversion and energy harvesting and play an irreplaceable role in the semiconductor field. As an important factor in determining the optoelectronic properties of polycrystalline materials, grain boundaries (GBs) are the focus of research. Particular emphases are placed on the generation and height of GB barriers, how carriers move at GBs, whether GBs act as carrier transport channels or recombination sites, and how to change the device performance by altering the electrical behaviors of GBs. This review introduces the evolution of GB theory and experimental observation history, classifies GB electrical behaviors from the perspective of carrier dynamics, and summarizes carrier transport state under external conditions such as bias and illumination and the related band bending. Then the carrier scattering at GBs and the electrical differences between GBs and twin boundaries are discussed. Last, the review describes how the electrical behaviors of GBs can be influenced and modified by treatments such as passivation or by consciously adjusting the distribution of grain boundary elements. By studying the carrier dynamics and the relevant electrical behaviors of GBs in polycrystalline materials, researchers can develop optoelectronics with higher performance.

7.
J Chem Inf Model ; 63(16): 5089-5096, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37566518

ABSTRACT

The theoretical rational design of organic semiconductors faces an obstacle in that the performance of organic semiconductors depends very much on their stacking and local morphology (for example, phase domains), which involves numerous molecules. Simulation becomes computationally expensive as intermolecular electronic couplings have to be calculated from density functional theory. Therefore, developing fast and accurate methods for intermolecular electronic coupling estimation is essential. In this work, by developing a series of new intermolecular 3D descriptors, we achieved fast and accurate prediction of electronic couplings in both crystalline and amorphous thin films. Three groups of developed descriptors could perform faster and higher accuracy prediction on electronic couplings than the most advanced state-of-the-art descriptors. This work paves the way for large-scale simulations, high-throughput calculations, and screening of organic semiconductors.


Subject(s)
Semiconductors , Computer Simulation
8.
RSC Adv ; 13(33): 22838-22862, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37520101

ABSTRACT

Graphene nanowalls (GNWs) have emerged as a promising material in the field of photodetection, thanks to their exceptional optical, electrical, mechanical, and thermodynamic properties. However, the lack of a comprehensive review in this domain hinders the understanding of GNWs' development and potential applications. This review aims to provide a systematic summary and analysis of the current research status and challenges in GNW-based photodetectors. We begin by outlining the growth mechanisms and methods of GNWs, followed by a discussion on their physical properties. Next, we categorize and analyze the latest research progress in GNW photodetectors, focusing on photovoltaic, photoconductive, and photothermal detectors. Lastly, we offer a summary and outlook, identifying potential challenges and outlining industry development directions. This review serves as a valuable reference for researchers and industry professionals in understanding and exploring the opportunities of GNW materials in photodetection.

9.
Nano Lett ; 23(11): 4923-4930, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37252845

ABSTRACT

Field-effect phototransistors feature gate voltage modulation, allowing dynamic performance control and significant signal amplification. A field-effect phototransistor can be designed to be inherently either unipolar or ambipolar in its response. However, conventionally, once a field-effect phototransistor has been fabricated, its polarity cannot be changed. Herein, a polarity-tunable field-effect phototransistor based on a graphene/ultrathin Al2O3/Si structure is demonstrated. Light can modulate the gating effect of the device and change the transfer characteristic curve from unipolar to ambipolar. This photoswitching in turn produces a significantly improved photocurrent signal. The introduction of an ultrathin Al2O3 interlayer also enables the phototransistor to achieve a responsivity in excess of 105 A/W, a 3 dB bandwidth of 100 kHz, a gain-bandwidth product of 9.14 × 1010 s-1, and a specific detectivity of 1.91 × 1013 Jones. This device architecture enables the gain-bandwidth trade-off in current field-effect phototransistors to be overcome, demonstrating the feasibility of simultaneous high-gain and fast-response photodetection.

10.
Opt Express ; 30(21): 38009-38015, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36258391

ABSTRACT

InAs/GaSb type-II superlattice materials have attracted in the field of infrared detection due to their high quality, uniformity and stability. The performance of InAs/GaSb type-II superlattice detector is limited by dark noise and light response. This work reports a gradual funnel photon trapping (GFPT) structure enabling the light trapping in the T2SL detector absorption area. The GFPT detector exhibits an efficient broadband responsivity enhancement of 30% and a darker current noise reduction of 3 times. It has excellent passivated by atomic layer deposition and achieves a high detectivity of 1.51 × 1011 cm Hz1/2 at 78 K.

11.
ACS Nano ; 16(8): 12777-12785, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35900823

ABSTRACT

Highly sensitive short-wave infrared (SWIR) detectors, compatible with the silicon-based complementary metal oxide semiconductor (CMOS) process, are regarded as the key enabling components in the miniaturized system for weak signal detection. To date, the high photogain devices are greatly limited by a large bias voltage, low-temperature refrigeration, narrow response band, and complex fabrication processes. Here, we demonstrate high photogain detectors working in the SWIR region at room temperature, which use graphene for charge transport and Te-hyperdoped silicon (Te-Si) for infrared absorption. The prolonged lifetime of carriers, combined with the built-in potential generated at the interface between the graphene and the Te-Si, leads to an ultrahigh photogain of 109 at room temperature (300 K) for 1.55 µm light. The gain can be improved to 1012, accompanied by a noise equivalent power (NEP) of 0.08 pW Hz-1/2 at 80 K. Moreover, the proposed device exhibits a NEP of 4.36 pW Hz-1/2 at 300 K at the wavelength of 2.7 µm, which is exceeding the working region of InGaAs detectors. This research shows that graphene can be used as an efficient platform for silicon-based SWIR detection and provides a strategy for the low-power, uncooled, high-gain infrared detectors compatible with the CMOS process.

12.
ACS Appl Mater Interfaces ; 14(22): 26245-26254, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35608062

ABSTRACT

Two-dimensional molybdenum disulfide (MoS2), featuring unique optoelectronic properties, has attracted tremendous interest in developing novel photodetection devices. However, the limited light absorption and small carrier transport rate of the monolayer MoS2 result in low photoresponse, and the large band gap limits its detection range in the visible region. In this study, we propose a nanoslit array-MoS2 hybrid device architecture with enhanced and broadened photoresponse. The nanoslit array can localize free-space light to achieve strong interactions with MoS2, and acts as the channel to improve charge transport. As a result, the Au nanoslit array-MoS2 hybrid detector exhibits a nearly 100-fold increase in photocurrent compared to the pure MoS2 device. More importantly, the hybrid device can broaden the photoresponse to the optical communication band of 1550 nm which is lower than the band gap of MoS2, by efficiently utilizing the hot carriers generated by the Au nanoslits. The experimental results are supported by both theoretical analysis and numerical simulation. Since our demonstration leverages the engineering of the hybrid photodetectors with metal nanostructures rather than semiconductor materials, it should be universal and applicable to other devices for broadband, high-efficiency photoelectric conversion.

13.
ACS Appl Mater Interfaces ; 14(21): 24864-24874, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35594206

ABSTRACT

Perovskite solar cells (PSCs) have demonstrated enormous potential for next-generation low-cost photovoltaics. However, due to the intrinsically low bond energy of the perovskite lattice, the long-term stability is normally undermined by ion migration initiated by the electric field and atmospheric conditions. Therefore, ideal ion migration inhibition is important to achieve an enhanced stability of PSCs. Herein, we first introduce a chemical vapor deposition (CVD) fabricated highly crystalline graphene as an atomic 2D blanket directly for the perovskite absorber of PSCs. Iodine and lithium ion migration is effectively inhibited for perovskite solar cells under a continuous static electric field. The water and oxygen corrosion of the unencapsulated device has been dramatically mitigated with atomic graphene blanketing on the perovskite film. With triphenylamine (TPA) molecule modification, the photoconversion efficiencies (PCEs) of the blanketed devices reach 21.54%. The sample with blanket graphene maintains 85% of the initial efficiency, in comparison to 52% of the control sample under voltage bias. After 600 h of aging at 25 °C and 55 RH%, 86% in comparison to <30% of the PCE for the control device is obtained for the sample with a graphene blanket. Thus, we propose that crystalline graphene has an excellent and effective ion-blocking blanket potential for highly stable perovskite devices.

14.
Nat Commun ; 13(1): 1773, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365650

ABSTRACT

The use of single-crystal substrates as templates for the epitaxial growth of single-crystal overlayers has been a primary principle of materials epitaxy for more than 70 years. Here we report our finding that, though counterintuitive, single-crystal 2D materials can be epitaxially grown on twinned crystals. By establishing a geometric principle to describe 2D materials alignment on high-index surfaces, we show that 2D material islands grown on the two sides of a twin boundary can be well aligned. To validate this prediction, wafer-scale Cu foils with abundant twin boundaries were synthesized, and on the surfaces of these polycrystalline Cu foils, we have successfully grown wafer-scale single-crystal graphene and hexagonal boron nitride films. In addition, to greatly increasing the availability of large area high-quality 2D single crystals, our discovery also extends the fundamental understanding of materials epitaxy.

15.
ACS Nano ; 16(3): 4458-4466, 2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35191301

ABSTRACT

The photogating effect in hybrid structures has manifested itself as a reliable and promising approach for photodetectors with ultrahigh responsivity. A crucial factor of the photogating effect is the built-in potential at the interface, which controls the separation and harvesting of photogenerated carriers. So far, the primary efforts of designing the built-in potential rely on discovering different materials and developing multilayer structures, which may raise problems in the compatibility with the standard semiconductor production line. Here, we report an enhanced photogating effect in a monolayer graphene photodetector based on a structured substrate, where the built-in potential is established by the mechanism of potential fluctuation engineering. We find that the enhancement factor of device responsivity is related to a newly defined parameter, namely, fluctuation period rate (Pf). Compared to the device without a nanostructured substrate, the responsivity of the device with an optimized Pf is enhanced by 100 times, reaching a responsivity of 240 A/W and a specific detectivity, D*, of 3.4 × 1012 Jones at 1550 nm wavelength and room temperature. Our experimental results are supported by both theoretical analysis and numerical simulation. Since our demonstration of the graphene photodetectors leverages the engineering of structures with monolayer graphene rather than materials with a multilayer complex structure. it should be universal and applicable to other hybrid photodetectors.

16.
Opt Express ; 29(19): 29690-29703, 2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34614709

ABSTRACT

Dynamical tunable plasmon-induced transparency (PIT) possesses the unique characteristics of controlling light propagation states, which promises numerous potential applications in efficient optical signal processing chips and nonlinear optical devices. However, previously reported configurations are sensitive to polarization and can merely operate under specific single polarization. In this work we propose an anisotropic PIT metamaterial device based on a graphene-black phosphorus (G-BP) heterostructure to realize a dual-polarization tunable PIT effect. The destructive interference coupling between the bright mode and dark modes under the orthogonal polarization state pronounced anisotropic PIT phenomenon. The coupling strength of the PIT system can be modulated by dynamically manipulating the Fermi energy of the graphene via the external electric field voltage. Moreover, the three-level plasmonic system and the coupled oscillator model are employed to explain the underlying mechanism of the PIT effect, and the analytical results show good consistency with the numerical calculations. Compared to the single-polarization PIT devices, the proposed device offers additional degrees of freedom in realizing universal tunable functionalities, which could significantly promote the development of next-generation integrated optical processing chips, optical modulation and slow light devices.

17.
ACS Appl Mater Interfaces ; 13(3): 4692-4702, 2021 Jan 27.
Article in English | MEDLINE | ID: mdl-33427453

ABSTRACT

Silicon/graphene nanowalls (Si/GNWs) heterojunctions with excellent integrability and sensitivity show an increasing potential in optoelectronic devices. However, the performance is greatly limited by inferior interfacial adhesion and week electronic transport caused by the horizontal buffer layer. Herein, a diamond-like carbon (DLC) interlayer is first introduced to construct Si/DLC/GNWs heterojunctions, which can significantly change the growth behavior of the GNWs film, avoiding the formation of horizontal buffer layers. Accordingly, a robust diamond-like covalent bond with a remarkable enhancement of the interfacial adhesion is yielded, which notably improves the complementary metal oxide semiconductor compatibility for photodetector fabrication. Importantly, the DLC interlayer is verified to undergo a graphitization transition during the high-temperature growth process, which is beneficial to pave a vertical conductive path and facilitate the transport of photogenerated carriers in the visible and near-infrared regions. As a result, the Si/DLC/GNWs heterojunction detectors can simultaneously exhibit improved photoresponsivity and response speed, compared with the counterparts without DLC interlayers. The introduction of the DLC interlayer might provide a universal strategy to construct hybrid interfaces with high performance in next-generation optoelectronic devices.

18.
Nanotechnology ; 32(7): 075703, 2021 Feb 12.
Article in English | MEDLINE | ID: mdl-33096539

ABSTRACT

The coupling system with dynamic manipulation characteristics is of great importance for the field of active plasmonics and tunable metamaterials. However, the traditional metal-based architectures suffer from a lack of electrical tunability. In this study, a metamaterial composed of perpendicular or parallel graphene-Al2O3-graphene stacks is proposed and demonstrated, which allows for the electric modulation of both graphene layers simultaneously. The resultant absorption of hybridized modes can be modulated to more than 50% by applying an external voltage, and the absorption bandwidth can reach 3.55 µm, which is 1.7 times enhanced than the counterpart of single-layer graphene. The modeling results demonstrate that the small relaxation time of graphene is of great importance to realize the broadband absorption. Moreover, the optical behaviors of the tunable metamaterial can be influenced by the incident polarization, the dielectric thickness, and especially by the Fermi energy of graphene. This work is of a crucial role in the design and fabrication of graphene-based broadband optical and optoelectronic devices.

19.
Opt Express ; 28(25): 38410-38418, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33379653

ABSTRACT

Anomalous redshift of the absorption peak of graphene in the cavity system is numerically and experimentally demonstrated. It is observed that the absorption peak exhibits a redshift as the Fermi level of graphene increases, which is contrary to the ordinary trend of graphene plasmons. The influencing factors, including the electron mobility of graphene, the cavity length, and the ribbon width, are comprehensively analyzed. Such anomalous redshift can be explained by the competition between the graphene plasmon mode and the optical cavity mode. The study herein could be beneficial for the design of graphene-based plasmonic devices.

20.
ACS Appl Mater Interfaces ; 12(7): 8429-8436, 2020 Feb 19.
Article in English | MEDLINE | ID: mdl-31976644

ABSTRACT

Photodetectors based on two-dimensional (2D) materials such as monolayer MoS2 are attractive because they can be directly integrated into the current metal-oxide semiconductor (CMOS) structures. Unfortunately, such devices suffer from low responsivity due to low absorption by the monolayer MoS2. Combining MoS2 with plasmonic nanostructures is an alternative solution for enhancing the absorption of the 2D semiconductor, and this can drastically increase the photoresponsivity of the corresponding photodetector. Herein, a device incorporating a grating-patterned nanoparticle structure is fabricated using traditional photolithography together with an annealing step. We demonstrate that this new structure leads to a strong enhancement in the photocurrent due to the coupling of the MoS2 to localized surface plasmons in the nanoparticle grating. Compared to a simple Au nanoparticle array, the nanoparticle grating structure generates a 100% increase in optical absorption. Thus, under 532 nm illumination, the composite nanoparticle grating/monolayer MoS2 integrated photodetector shows a 111-fold increase in the photocurrent compared to the same device in the absence of nanoparticles. The gateless responsivity can be up to 38.57 A/W and a specific detectivity of 9.89 × 109 Jones is realized. Moreover, photothermal flux derivations indicate that, in addition to the expected increase due to light-generated carrier multiplication, the thermal effects of plasmons provide a significant contribution to the photocurrent enhancement.

SELECTION OF CITATIONS
SEARCH DETAIL
...