Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.750
Filter
1.
Angew Chem Int Ed Engl ; : e202408154, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38887967

ABSTRACT

The radical Truce-Smiles rearrangement is a straightforward strategy for incorporating aryl groups into organic molecules for which asymmetric processes remains rare. By employing a readily available and non-expensive chiral auxiliary, we developed a highly efficient asymmetric photocatalytic acyl and alkyl radical Truce-Smiles rearrangement of α-substituted acrylamides using tetrabutylammonium decatungstate (TBADT) as a hydrogen atom-transfer photocatalyst, along with aldehydes or C-H containing precursors. The rearranged products exhibited excellent diastereoselectivities (7:1 to >98:2 d.r.) and chiral auxiliary was easily removed. Mechanistic studies allowed understanding the transformation in which density functional theory (DFT) calculations provided insights into the stereochemistry-determining step.

2.
Polymers (Basel) ; 16(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891409

ABSTRACT

The importance of bacteria detection lies in its role in enabling early intervention, disease prevention, environmental protection, and effective treatment strategies. Advancements in technology continually enhance the speed, accuracy, and sensitivity of detection methods, aiding in addressing these critical issues. This study first reports the fabrication of an inverter constructed using crosslinked-poly(4-vinylphenol) (C-PVP) as the dielectric layer and an organic complementary metal-oxide semiconductor (O-CMOS) based on pentacene and N,N'-ditridecylperylene-3,4,9,10-tetracarboxylic diimide (PTCDI-C13) as a diagnostic biosensor to rapidly detect bacterial concentration. Bacteria including Escherichia coli O157, Staphylococcus aureus ATCC25922, and Enterococcus faecalis SH-1051210 were analysed on the inverters at an ultra-low operating voltage of 2 V. The high density of negative charge on bacteria surfaces strongly modulates the accumulated negative carriers within the inverter channel, resulting in a shift of the switching voltage. The inverter-based bacteria sensor exhibits a linear-like response to bacteria concentrations ranging from 102 to 108 CFU/mL, with a sensitivity above 60%. Compared to other bacterial detectors, the advantage of using an inverter lies in its ability to directly read the switching voltage without requiring an external computing device. This facilitates rapid and accurate bacterial concentration measurement, offering significant ease of use and potential for mass production.

3.
Phytochemistry ; 225: 114189, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38905919

ABSTRACT

Eight previously undescribed diterpenoids, caesamins A-H (1-8), were separated and identified from the seeds of Caesalpinia minax Hance. Their structures were characterized by extensive spectroscopic data and X-ray crystallographic analysis. Structurally, caesamin A (1) is the first cassane-type diterpenoid with a C23 carbon skeleton containing an unusual isopropyl. Caesamin F (6) represents the first example of cleistanthane diterpenoid from the genus Caesalpinia. Caesamins B (2) and F (6) exhibited inhibitory activity against LPS-induced nitric oxide production in RAW 264.7 macrophages with IC50 values of 45.67 ± 0.92 and 42.99 ± 0.24 µM, comparable to positive control 43.69 ± 2.62 µM of NG-Monomethyl-L-arginine. Furthermore, the chemotaxonomic significance of the isolates was discussed.

4.
Phys Med Biol ; 69(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38821109

ABSTRACT

Objective.The validation of deformable image registration (DIR) for contour propagation is often done using contour-based metrics. Meanwhile, dose accumulation requires evaluation of voxel mapping accuracy, which might not be accurately represented by contour-based metrics. By fabricating a deformable anthropomorphic pelvis phantom, we aim to (1) quantify the voxel mapping accuracy for various deformation scenarios, in high- and low-contrast regions, and (2) identify any correlation between dice similarity coefficient (DSC), a commonly used contour-based metric, and the voxel mapping accuracy for each organ.Approach. Four organs, i.e. pelvic bone, prostate, bladder and rectum (PBR), were 3D printed using PLA and a Polyjet digital material, and assembled. The latter three were implanted with glass bead and CT markers within or on their surfaces. Four deformation scenarios were simulated by varying the bladder and rectum volumes. For each scenario, nine DIRs with different parameters were performed on RayStation v10B. The voxel mapping accuracy was quantified by finding the discrepancy between true and mapped marker positions, termed the target registration error (TRE). Pearson correlation test was done between the DSC and mean TRE for each organ.Main results. For the first time, we fabricated a deformable phantom purely from 3D printing, which successfully reproduced realistic anatomical deformations. Overall, the voxel mapping accuracy dropped with increasing deformation magnitude, but improved when more organs were used to guide the DIR or limit the registration region. DSC was found to be a good indicator of voxel mapping accuracy for prostate and rectum, but a comparatively poorer one for bladder. DSC > 0.85/0.90 was established as the threshold of mean TRE ⩽ 0.3 cm for rectum/prostate. For bladder, extra metrics in addition to DSC should be considered.Significance. This work presented a 3D printed phantom, which enabled quantification of voxel mapping accuracy and evaluation of correlation between DSC and voxel mapping accuracy.


Subject(s)
Pelvis , Phantoms, Imaging , Humans , Pelvis/diagnostic imaging , Radiation Dosage , Image Processing, Computer-Assisted/methods , Tomography, X-Ray Computed , Male , Printing, Three-Dimensional
5.
Phys Med ; 122: 103380, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805761

ABSTRACT

INTRODUCTION: Real-time gated proton therapy (RGPT) is a motion management technique unique to the Hitachi particle therapy system. It uses pulsed fluoroscopy to track an implanted fiducial marker. There are currently no published guidelines on how to conduct the commissioning and quality assurance. In this work we reported on our centre's commissioning workflow and our daily and monthly QA procedures. METHODS: Six commissioning measurements were designed for RGPT. The measurements include imaging qualities, fluoroscopic exposures, RGPT marker tracking accuracy, temporal gating latency, fiducial marker tracking fidelity and an end-to-end proton dosimetry measurement. Daily QA consists of one measurement on marker localization accuracy. Four months daily QA trends are presented. Monthly QA consists of three measurementson the gating latency, fluoroscopy imaging quality and dosimetry verification of gating operation with RGPT. RESULTS: The RGPT was successfully commissioned in our centre. The air kerma rates were within 15 % from specifications and the marker tracking accuracies were within 0.245 mm. The gating latencies for turning the proton beam on and off were 119.5 and 50.0 ms respectively. The 0.4x10.0 mm2 Gold AnchorTM gave the best tracking results with visibility up to 30 g/cm2. Gamma analysis showed that dose distribution of a moving and static detectors had a passing rate of more than 95 % at 3 %/3mm. The daily marker localization QA results were all less than 0.2 mm. CONCLUSION: This work could serve as a good reference for other upcoming Hitachi particle therapy centres who are interested to use RGPT as their motion management solution.


Subject(s)
Proton Therapy , Quality Assurance, Health Care , Proton Therapy/instrumentation , Fiducial Markers , Radiometry , Time Factors , Fluoroscopy , Quality Control , Humans , Radiotherapy, Image-Guided
6.
Biomaterials ; 310: 122635, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38810386

ABSTRACT

Hepatocellular carcinoma (HCC) seriously threatens the human health. Previous investigations revealed that γ-glutamyltranspeptidase (GGT) was tightly associated with the chronic injury, hepatic fibrosis, and the development of HCC, therefore might act as a potential indicator for monitoring the HCC-related processes. Herein, with the contribution of a structurally optimized probe ETYZE-GGT, the bimodal imaging in both far red fluorescence (FL) and photoacoustic (PA) modes has been achieved in multiple HCC-related models. To our knowledge, this work covered the most comprehensive models including the fibrosis and developed HCC processes as well as the premonitory induction stages (autoimmune hepatitis, drug-induced liver injury, non-alcoholic fatty liver disease). ETYZE-GGT exhibited steady and practical monitoring performances on reporting the HCC stages via visualizing the GGT dynamics. The two modes exhibited working consistency and complementarity with high spatial resolution, precise apparatus and desirable biocompatibility. In cooperation with the existing techniques including testing serum indexes and conducting pathological staining, ETYZE-GGT basically realized the universal application for the accurate pre-clinical diagnosis of as many HCC stages as possible. By deeply exploring the mechanically correlation between GGT and the HCC process, especially during the premonitory induction stages, we may further raise the efficacy for the early diagnosis and treatment of HCC.


Subject(s)
Carcinoma, Hepatocellular , Photoacoustic Techniques , gamma-Glutamyltransferase , gamma-Glutamyltransferase/metabolism , Animals , Humans , Carcinoma, Hepatocellular/diagnostic imaging , Photoacoustic Techniques/methods , Liver Neoplasms/diagnostic imaging , Liver Diseases/diagnostic imaging , Optical Imaging/methods , Mice , Male , Mice, Inbred BALB C , Liver/pathology , Liver/diagnostic imaging , Liver/enzymology , Fluorescent Dyes/chemistry
7.
Food Chem ; 454: 139735, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38795621

ABSTRACT

Arsenite (As3+), a highly carcinogenic heavy metal ion and widely distributed in nature, can have serious health implications even with minimal exposure. Herein, a portable smartphone device-based ratiometric fluorescence platform was established for sensitive detection of As3+. The work relied on the use of metal-organic framework-tagged cDNA (PCN-224-cDNA), with high adsorption capability and fluorescence properties, as an internal reference to quench the fluorescence of FAM-anchored aptamer (FAM-Apt) via hybridization. In the presence of As3+, FAM-Apt specifically bound to As3+ leading to conformational changes, which detached from the PCN-224-cDNA surface. Interestingly, a smartphone-based readout equipment engineered using a 3D-printed hardware device administered the portable detection of As3+. The limit of detection (LOD) for the proposed ratiometric biosensor was calculated to be 0.021 ng/mL, significantly below WHO's safety threshold. Hence, it demonstrates significant potential for large-scale screening of As3+ residues in food and the environment.


Subject(s)
Biosensing Techniques , Limit of Detection , Smartphone , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Arsenites/analysis , Fluorescence , Aptamers, Nucleotide/chemistry , Food Contamination/analysis , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods , Exonucleases/metabolism , Exonucleases/chemistry
8.
Insights Imaging ; 15(1): 121, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38763985

ABSTRACT

OBJECTIVES: To develop an interactive, non-invasive artificial intelligence (AI) system for malignancy risk prediction in cystic renal lesions (CRLs). METHODS: In this retrospective, multicenter diagnostic study, we evaluated 715 patients. An interactive geodesic-based 3D segmentation model was created for CRLs segmentation. A CRLs classification model was developed using spatial encoder temporal decoder (SETD) architecture. The classification model combines a 3D-ResNet50 network for extracting spatial features and a gated recurrent unit (GRU) network for decoding temporal features from multi-phase CT images. We assessed the segmentation model using sensitivity (SEN), specificity (SPE), intersection over union (IOU), and dice similarity (Dice) metrics. The classification model's performance was evaluated using the area under the receiver operator characteristic curve (AUC), accuracy score (ACC), and decision curve analysis (DCA). RESULTS: From 2012 to 2023, we included 477 CRLs (median age, 57 [IQR: 48-65]; 173 men) in the training cohort, 226 CRLs (median age, 60 [IQR: 52-69]; 77 men) in the validation cohort, and 239 CRLs (median age, 59 [IQR: 53-69]; 95 men) in the testing cohort (external validation cohort 1, cohort 2, and cohort 3). The segmentation model and SETD classifier exhibited excellent performance in both validation (AUC = 0.973, ACC = 0.916, Dice = 0.847, IOU = 0.743, SEN = 0.840, SPE = 1.000) and testing datasets (AUC = 0.998, ACC = 0.988, Dice = 0.861, IOU = 0.762, SEN = 0.876, SPE = 1.000). CONCLUSION: The AI system demonstrated excellent benign-malignant discriminatory ability across both validation and testing datasets and illustrated improved clinical decision-making utility. CRITICAL RELEVANCE STATEMENT: In this era when incidental CRLs are prevalent, this interactive, non-invasive AI system will facilitate accurate diagnosis of CRLs, reducing excessive follow-up and overtreatment. KEY POINTS: The rising prevalence of CRLs necessitates better malignancy prediction strategies. The AI system demonstrated excellent diagnostic performance in identifying malignant CRL. The AI system illustrated improved clinical decision-making utility.

9.
Microb Cell Fact ; 23(1): 123, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724968

ABSTRACT

BACKGROUND: Saccharomyces cerevisiae is an important microorganism in ethanol synthesis, and with sugarcane molasses as the feedstock, ethanol is being synthesized sustainably to meet growing demands. However, high-concentration ethanol fermentation based on high-concentration sugarcane molasses-which is needed for reduced energy consumption of ethanol distillation at industrial scale-is yet to be achieved. RESULTS: In the present study, to identify the main limiting factors of this process, adaptive laboratory evolution and high-throughput screening (Py-Fe3+) based on ARTP (atmospheric and room-temperature plasma) mutagenesis were applied. We identified high osmotic pressure, high temperature, high alcohol levels, and high concentrations of K+, Ca2+, K+ and Ca2+ (K+&Ca2+), and sugarcane molasses as the main limiting factors. The robust S. cerevisiae strains of NGT-F1, NGW-F1, NGC-F1, NGK+, NGCa2+ NGK+&Ca2+-F1, and NGTM-F1 exhibited high tolerance to the respective limiting factor and exhibited increased yield. Subsequently, ethanol synthesis, cell morphology, comparative genomics, and gene ontology (GO) enrichment analysis were performed in a molasses broth containing 250 g/L total fermentable sugars (TFS). Additionally, S. cerevisiae NGTM-F1 was used with 250 g/L (TFS) sugarcane molasses to synthesize ethanol in a 5-L fermenter, giving a yield of 111.65 g/L, the conversion of sugar to alcohol reached 95.53%. It is the highest level of physical mutagenesis yield at present. CONCLUSION: Our results showed that K+ and Ca2+ ions primarily limited the efficient production of ethanol. Then, subsequent comparative transcriptomic GO and pathway analyses showed that the co-presence of K+ and Ca2+ exerted the most prominent limitation on efficient ethanol production. The results of this study might prove useful by promoting the development and utilization of green fuel bio-manufactured from molasses.


Subject(s)
Calcium , Ethanol , Fermentation , Molasses , Potassium , Saccharomyces cerevisiae , Saccharum , Ethanol/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharum/metabolism , Calcium/metabolism , Potassium/metabolism
10.
Transl Oncol ; 45: 101968, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713923

ABSTRACT

OBJECTIVES: Killer cell lectin like receptor G1 (KLRG1) is identified as a co-inhibitory receptor for NK cells and antigen-experienced T cells. The role of KLRG1 in immune regulation in patients with non-small cell lung cancer (NSCLC) remains poorly understood. MATERIALS AND METHODS: We measured the proportion and immune function of KLRG1+CD8+T cells derived from peripheral blood in patients with NSCLC by flow cytometry. Besides, using data from the gene expression profiles and single-cell sequencing, we explored the expression and immune role of KLRG1 in tumor tissues of patients with NSCLC. We further determined the prognostic value of KLRG1 in terms of overall survival (OS) in NSCLC patients. RESULTS: We found that the proportion of KLRG1+CD8+T cells in peripheral blood significantly increased in patients with NSCLC as compared to those with benign pulmonary nodules and healthy donors. Peripheral KLRG1+CD8+T cell proportion was increased in elder subjects compared to that in younger ones, implying an immunosenescence phenotype. Moreover, the KLRG1+CD8+T cell levels were positively correlated with tumor size and TNM stage in the NSCLC cohort. In vitro stimulation experiments demonstrated that the KLRG1+CD8+T cells from peripheral blood expressed higher levels of Granzyme B and perforin than the KLRG1-CD8+ T cells. However, single-cell RNA sequencing data revealed that the KLRG1+CD8+ T cells were less infiltrated in tumor microenvironment and exhibited impaired cytotoxicity. The KLRG1 gene expression levels were significantly lower in tumor tissues than that in normal lung tissues, and were inversely correlated with CDH1 expression levels. Moreover, higher expression of CDH1 in tumor tissues predicted worse overall survival only in patients with KLRG1-high expression, but not in the KLRG1-low subset. CONCLUSION: This study demonstrates that KLRG1+CD8+T cells were associated with tumor immune evasion in NSCLC and suggests KLRG1 as a potential immunotherapy target.

11.
Heliyon ; 10(10): e31502, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38818203

ABSTRACT

This study describes the non-bracket oblique traction-hoisting construction strategy for cable-truss structures, which is to assemble the upper and lower radial cables, hoop cables, sling cables, and compression rods without stress at a low altitude, then hoist the cable-strut system to a high altitude by oblique traction of the upper radial cables through the jack fixed on the upper radial anchorage nodes, and finally actively tension the lower radial cables to achieve the designed shape and prestress level of the entire structure. This strategy assembles at a low altitude, requires simple operations, results in high tensioning efficiency, and does not require brackets, which could guarantee both quality and quantity in terms of completing the construction of cable-truss structures. The semilune-shaped canopy of Yueqing Stadium is constructed using this strategy. The construction simulation and disturbance stability analyses of the structure in the traction-hoisting state and prestress tensioning state are conducted using a nonlinear dynamic finite element method. In the traction-hoisting stage, the deformation changes sharply, and the hoop cables and upper radial cables make up the primary bearing substructure, while the lower radial cables are in a suspended hanging state. In the forming process, the forces of the radial and hoop cables increase gradually, and the structure finally reaches the designed state. For cable-trusses with crossed upper and lower radial cables, the additional stabilizing tooling ropes should be tied at the top of the middle rods to ensure geometric stability because they are susceptible to excessive out-of-plane displacement or even overturning, which is the least desirable at the beginning of traction hoisting.

12.
World Neurosurg ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38734168

ABSTRACT

OBJECTIVE: To evaluate the risk factors of new osteoporotic vertebral compression fractures (OVCFs) after percutaneous vertebroplasty (PVP). METHODS: From January 2016 to November 2019, patients suffering from OVCFs were retrospectively reviewed. The independent influence factors for new OVCFs after PVP were assessed, from following variables: age, sex, body mass index, bone mineral density (BMD), history of alcoholism, smoking, hypertension, diabetes, glucocorticoid use, and prior vertebral fractures, the number of initial fractures, mean cement volume, method of puncture, D-type of cement leakage, and regular antiosteoporosis treatment. RESULTS: A total of 268 patients with 347 levels met the inclusion criteria and were finally included in this study. Forty-nine levels of new OVCFs among 33 patients (12.31%) were observed during the follow-up period. It indicated that female (adjusted odds ratio [OR]: 6.812, 95% confidence interval {CI}: [1.096, 42.337], P = 0.040), lower BMD (adjusted OR: 0.477, 95% CI: [0.300, 0.759], P = 0.002), prior vertebral fractures (adjusted OR: 16.145, 95% CI: [5.319, 49.005], P = 0.000), and regular antiosteoporosis treatment (adjusted OR: 0.258, 95% CI: [0.086, 0.774], P = 0.016) were independent influence factors for new OVCF. The cut-off value of BMD to reach new OVCF was -3.350, with a sensitivity of 0.660 and a specificity of 0.848. CONCLUSION: Female, lower BMD (T-score of lumbar), prior vertebral fractures, and regular antiosteoporosis treatment were independent influencing factors. BMD (T-score of lumbar) lower than -3.350 would increase risk for new OVCF, and none osteoporotic treatment has detrimental effect on new onset fractures following PVP.

13.
Sci Rep ; 14(1): 11065, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744933

ABSTRACT

The development of stretchable electronic devices is a critical area of research for wearable electronics, particularly electronic textiles (e-textiles), where electronic devices embedded in clothing need to stretch and bend with the body. While stretchable electronics technologies exist, none have been widely adopted. This work presents a novel and potentially transformative approach to stretchable electronics using a ubiquitous structure: the helix. A strip of flexible circuitry ('e-strip') is twisted to form a helical ribbon, transforming it from flexible to stretchable. A stretchable core-in this case rubber cord-supports the structure, preventing damage from buckling. Existing helical electronics have only extended to stretchable interconnects between circuit modules, and individual components such as printed helical transistors. Fully stretchable circuits have, until now, only been produced in planar form: flat circuits, either using curved geometry to enable them to stretch, or using inherently stretchable elastomer substrates. Helical e-strips can bend along multiple axes, and repeatedly stretch between 30 and 50%, depending on core material and diameter. LED and temperature sensing helical e-strips are demonstrated, along with design rules for helical e-strip fabrication. Widely available materials and standard fabrication processes were prioritized to maximize scalability and accessibility.

14.
Comput Biol Med ; 176: 108621, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763067

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory impairments, and behavioral changes. The presence of abnormal beta-amyloid plaques and tau protein tangles in the brain is known to be associated with AD. However, current limitations of imaging technology hinder the direct detection of these substances. Consequently, researchers are exploring alternative approaches, such as indirect assessments involving monitoring brain signals, cognitive decline levels, and blood biomarkers. Recent studies have highlighted the potential of integrating genetic information into these approaches to enhance early detection and diagnosis, offering a more comprehensive understanding of AD pathology beyond the constraints of existing imaging methods. Our study utilized electroencephalography (EEG) signals, genotypes, and polygenic risk scores (PRSs) as features for machine learning models. We compared the performance of gradient boosting (XGB), random forest (RF), and support vector machine (SVM) to determine the optimal model. Statistical analysis revealed significant correlations between EEG signals and clinical manifestations, demonstrating the ability to distinguish the complexity of AD from other diseases by using genetic information. By integrating EEG with genetic data in an SVM model, we achieved exceptional classification performance, with an accuracy of 0.920 and an area under the curve of 0.916. This study presents a novel approach of utilizing real-time EEG data and genetic background information for multimodal machine learning. The experimental results validate the effectiveness of this concept, providing deeper insights into the actual condition of patients with AD and overcoming the limitations associated with single-oriented data.


Subject(s)
Alzheimer Disease , Electroencephalography , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Humans , Electroencephalography/methods , Female , Male , Machine Learning , Support Vector Machine , Aged , Signal Processing, Computer-Assisted , Algorithms
15.
J Agric Food Chem ; 72(21): 11837-11853, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38743877

ABSTRACT

Diabetes mellitus (DM) is a chronic endocrine disorder that poses a long-term risk to human health accompanied by serious complications. Common antidiabetic drugs are usually accompanied by side effects such as hepatotoxicity and nephrotoxicity. There is an urgent need for natural dietary alternatives for diabetic treatment. Tea (Camellia sinensis) consumption has been widely investigated to lower the risk of diabetes and its complications through restoring glucose metabolism homeostasis, safeguarding pancreatic ß-cells, ameliorating insulin resistance, ameliorating oxidative stresses, inhibiting inflammatory response, and regulating intestinal microbiota. It is indispensable to develop effective strategies to improve the absorption of tea active compounds and exert combinational effects with other natural compounds to broaden its hypoglycemic potential. The advances in clinical trials and population-based investigations are also discussed. This review primarily delves into the antidiabetic potential and underlying mechanisms of tea active compounds, providing a theoretical basis for the practical application of tea and its active compounds against diabetes.


Subject(s)
Camellia sinensis , Hypoglycemic Agents , Plant Extracts , Tea , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Tea/chemistry , Camellia sinensis/chemistry , Animals , Plant Extracts/chemistry , Plant Extracts/pharmacology , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Insulin Resistance , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism
16.
ACS Appl Mater Interfaces ; 16(19): 25080-25089, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38688033

ABSTRACT

The specific and excellent properties of the low-dimensional nanomaterials have made them promising building blocks to be integrated into microelectromechanical systems with high performances. Here, we present a new microheater chip for in situ TEM, in which a cross-stacked superaligned carbon nanotube (CNT) film resistor is located on a suspended SiNx membrane via van der Waals (vdW) interactions. The CNT microheater has a fast high-temperature response and low power consumption, thanks to the micro/nanostructure of the CNT materials. Moreover, the membrane bulging amplitude is significantly reduced to only ∼100 nm at 800 °C for the vdW interaction between the CNTs and the SiNx membrane. An in situ observation of the Sn melting process is successfully conducted with the assistance of a customized flexible temperature control system. The uniform wafer-scaled CNT films enable a high level of consistency and cost-effective mass production of such chips. The as-developed in situ chips, as well as the related techniques, hold great promise in nanoscience, materials science, and electrochemistry.

17.
J Immunother Cancer ; 12(4)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589248

ABSTRACT

BACKGROUND: Despite the encouraging outcome of chimeric antigen receptor T cell (CAR-T) targeting B cell maturation antigen (BCMA) in managing relapsed or refractory multiple myeloma (RRMM) patients, the therapeutic side effects and dysfunctions of CAR-T cells have limited the efficacy and clinical application of this promising approach. METHODS: In this study, we incorporated a short hairpin RNA cassette targeting PD-1 into a BCMA-CAR with an OX-40 costimulatory domain. The transduced PD-1KD BCMA CAR-T cells were evaluated for surface CAR expression, T-cell proliferation, cytotoxicity, cytokine production, and subsets when they were exposed to a single or repetitive antigen stimulation. Safety and efficacy were initially observed in a phase I clinical trial for RRMM patients. RESULTS: Compared with parental BCMA CAR-T cells, PD-1KD BCMA CAR-T cell therapy showed reduced T-cell exhaustion and increased percentage of memory T cells in vitro. Better antitumor activity in vivo was also observed in PD-1KD BCMA CAR-T group. In the phase I clinical trial of the CAR-T cell therapy for seven RRMM patients, safety and efficacy were initially observed in all seven patients, including four patients (4/7, 57.1%) with at least one extramedullary site and four patients (4/7, 57.1%) with high-risk cytogenetics. The overall response rate was 85.7% (6/7). Four patients had a stringent complete response (sCR), one patient had a CR, one patient had a partial response, and one patient had stable disease. Safety profile was also observed in these patients, with an incidence of manageable mild to moderate cytokine release syndrome and without the occurrence of neurological toxicity. CONCLUSIONS: Our study demonstrates a design concept of CAR-T cells independent of antigen specificity and provides an alternative approach for improving the efficacy of CAR-T cell therapy.


Subject(s)
Multiple Myeloma , Receptors, Chimeric Antigen , Humans , B-Cell Maturation Antigen/genetics , B-Cell Maturation Antigen/metabolism , Down-Regulation , Multiple Myeloma/therapy , Phenotype , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes , Clinical Trials, Phase I as Topic
18.
J Virus Erad ; 10(1): 100368, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38601702

ABSTRACT

West Nile virus (WNV) is an important neurotropic virus that accounts for the emergence of human arboviral encephalitis and meningitis. The interaction of WNV with signaling pathways plays a key role in controlling WNV infection. We have investigated the roles of the AKT and ERK pathways in supporting WNV propagation and modulating the inflammatory response following WNV infection. WNV established a productive infection in neuronal cell lines originated from human and mouse. Expression of IL-11 and TNF-α was markedly up-regulated in the infected human neuronal cells, indicating elicitation of inflammation response upon WNV infection. WNV incubation rapidly activated signaling cascades of AKT (AKT-S6-4E-BP1) and ERK (MEK-ERK-p90RSK) pathways. Treatment with AKT inhibitor MK-2206 or MEK inhibitor U0126 abrogated WNV-induced AKT or ERK activation. Strong activation of AKT and ERK signaling pathways could be detectable at 24 h after WNV infection, while such activation was abolished at 48 h post infection. U0126 treatment or knockdown of ERK expression significantly increased WNV RNA levels and viral titers and efficiently decreased IL-11 production induced by WNV, suggesting the involvement of ERK pathway in WNV propagation and IL-11 induction. MK-2206 treatment enhanced WNV RNA replication accompanied with a moderate decrease in IL-11 production. These results demonstrate that engagement of AKT and ERK signaling pathways facilitates viral infection and may be implicated in WNV pathogenesis.

19.
Small ; : e2401017, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593292

ABSTRACT

Doping is a recognized method for enhancing catalytic performance. The introduction of strains is a common consequence of doping, although it is often overlooked. Differentiating the impact of doping and strain on catalytic performance poses a significant challenge. In this study, Cu-doped Bi catalysts with substantial tensile strain are synthesized. The synergistic effects of doping and strain in bismuth result in a remarkable CO2RR performance. Under optimized conditions, Cu1/6-Bi demonstrates exceptional formate Faradaic efficiency (>95%) and maintains over 90% across a wide potential window of 900 mV. Furthermore, it delivers an industrial-relevant partial current density of -317 mA cm-2 at -1.2 VRHE in a flow cell, while maintaining its selectivity. Additionally, it exhibits exceptional long-term stability, surpassing 120 h at -200 mA cm-2. Through experimental and theoretical mechanistic investigations, it has been determined that the introduction of tensile strain facilitates the adsorption of *CO2, thereby enhancing the reaction kinetics. Moreover, the presence of Cu dopants and tensile strain further diminishes the energy barrier for the formation of *OCHO intermediate. This study not only offers valuable insights for the development of effective catalysts for CO2RR through doping, but also establishes correlations between doping, lattice strains, and catalytic properties of bismuth catalysts.

20.
J Appl Clin Med Phys ; : e14348, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561975

ABSTRACT

INTRODUCTION: Daily quality assurance is an integral part of a radiotherapy workflow to ensure the dose is delivered safely and accurately to the patient. It is performed before the first treatment of the day and needs to be time and cost efficient for a multiple gantries proton center. In this study, we introduced an efficient method to perform QA for output constancy, range verification, spot positioning accuracy and imaging and proton beam isocenter coincidence with DailyQA3. METHODS: A stepped acrylic block of specific dimensions is fabricated and placed on top of the DailyQA3 device. Treatment plans comprising of two different spread-out Bragg peaks and five individual spots of 1.0 MU each are designed to be delivered to the device. A mathematical framework to measure the 2D distance between the detectors and individual spot is introduced and play an important role in realizing the spot positioning and centering QA. Lastly, a 5 months trends of the QA for two gantries are presented. RESULTS: The outputs are monitored by two ion chambers in the DailyQA3 and a tolerance of ± 3 % $ \pm 3\% $ are used. The range of the SOBPs are monitored by the ratio of ion chamber signals and a tolerance of ± 1 mm $ \pm 1\ {\mathrm{mm}}$ is used. Four diodes at ± 10 cm $ \pm 10\ {\mathrm{cm}}$ from the central ion chambers are used for spot positioning QA, while the central ion chamber is used for imaging and proton beam isocenter coincidence QA. Using the framework, we determined the absolute signal threshold corresponding to the offset tolerance between the individual proton spot and the detector. A 1.5 mm $1.5\ {\mathrm{mm}}$ tolerances are used for both the positioning and centering QA. No violation of the tolerances is observed in the 5 months trends for both gantries. CONCLUSION: With the proposed approach, we can perform four QA items in the TG224 within 10 min.

SELECTION OF CITATIONS
SEARCH DETAIL
...