Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Mater Horiz ; 9(7): 1921-1934, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35535754

ABSTRACT

Highly stretchable, sensitive and room-temperature nitrogen dioxide (NO2) sensors are fabricated by exploiting intrinsically stretchable, transparent and ion-conducting hydrogels and active metals as the novel transducing materials and electrodes, respectively. The NO2 sensor exhibits high sensitivity (60.02% ppm-1), ultralow theoretical limit of detection (6.8 ppb), excellent selectivity, linearity and reversibility at room temperature. Notably, the sensitivity can be maintained even under 50% tensile strain. For the first time, it's found that the metal electrodes significantly impact the sensing performance. Specifically, the sensitivity is boosted from 31.18 to 60.02% ppm-1 by replacing the anodic silver with copper-tin alloy. Importantly, by applying specially designed sensing tests, and microscopic and composition analyses, we have obtained the inherent NO2 sensing mechanism: the anodic metal tends to be oxidized and the NO2 molecules tend to react in the cathode-gel interface. The introduction of glycerol converts the hydrogel into the organohydrogel with remarkably enhanced anti-drying and anti-freezing capacities and toughness, which effectively improved the long-time stability of the sensors. Importantly, we execute sound/light alarms and a wireless smartphone alarm by utilizing a designed circuit board and applet. This work gives an incisive investigation for the preparation, performance improvement, mechanism and application of hydrogel-based NO2 sensors, promoting the evolution of hydrogel ionotronics.


Subject(s)
Hydrogels , Nitrogen Dioxide , Electrodes , Nitrogen Dioxide/analysis , Temperature
2.
Mater Horiz ; 9(7): 1935-1946, 2022 07 04.
Article in English | MEDLINE | ID: mdl-35535758

ABSTRACT

The traditional human-machine interaction mode of communicating solely with pressure sensors needs modification, especially at a time when COVID-19 is circulating globally. Here, a transparent, stretchable, resilient, and high-performance hydrogel fiber-based bimodal sensor is fabricated by using a polyacrylamide-alginate double network hydrogel, which features high sensitivity (3.17% cm-1), wide working range (18 cm), fast response/recovery speeds (90/90 ms) and good stability in proximity sensing, and impressive pressure sensing performance, including high sensitivity (0.91 kPa-1), short response/recovery time (40/40 ms), low detection limit (63 Pa) and good linearity. Moreover, the response switch between proximity/pressure modes is measured and non-interfering dual-mode detection is achieved. Notably, the stretchable bimodal sensor is capable of working under 100% tensile strain without degrading the sensing performance. Specifically, the proximity sensor shows good immunity to the strain, while the pressure sensitivity is even promoted. Furthermore, the sensor is tough enough to work normally after punctures from a knife and strikes from a wrench. Notably, the sensor can be used for gesture recognition and subtle pressure detection, such as small water droplets (10 mg), wrist pulse, etc. A 3 × 3 array is further shown for accurate spatial sensing and location identification, verifying the feasibility of its practical application.


Subject(s)
COVID-19 , Hydrogels , Alginates , Humans , Ions
3.
Mater Horiz ; 9(5): 1356-1386, 2022 05 10.
Article in English | MEDLINE | ID: mdl-35156986

ABSTRACT

Multiple stretchable materials have been successively developed and applied to wearable devices, soft robotics, and tissue engineering. Organohydrogels are currently being widely studied and formed by dispersing immiscible hydrophilic/hydrophobic polymer networks or only hydrophilic polymer networks in an organic/water solvent system. In particular, they can not only inherit and carry forward the merits of hydrogels, but also have some unique advantageous features, such as anti-freezing and water retention abilities, solvent resistance, adjustable surface wettability, and shape memory effect, which are conducive to the wide environmental adaptability and intelligent applications. This review first summarizes the structure, preparation strategy, and unique advantages of the reported organohydrogels. Furthermore, organohydrogels can be optimized for electro-mechanical properties or endowed with various functionalities by adding or modifying various functional components owing to their modifiability. Correspondingly, different optimization strategies, mechanisms, and advanced developments are described in detail, mainly involving the mechanical properties, conductivity, adhesion, self-healing properties, and antibacterial properties of organohydrogels. Moreover, the applications of organohydrogels in flexible sensors, energy storage devices, nanogenerators, and biomedicine have been summarized, confirming their unlimited potential in future development. Finally, the existing challenges and future prospects of organohydrogels are provided.


Subject(s)
Hydrogels , Polymers , Electric Conductivity , Hydrogels/chemistry , Solvents , Water
4.
Nanomicro Lett ; 14(1): 52, 2022 Jan 29.
Article in English | MEDLINE | ID: mdl-35092489

ABSTRACT

With the advent of the 5G era and the rise of the Internet of Things, various sensors have received unprecedented attention, especially wearable and stretchable sensors in the healthcare field. Here, a stretchable, self-healable, self-adhesive, and room-temperature oxygen sensor with excellent repeatability, a full concentration detection range (0-100%), low theoretical limit of detection (5.7 ppm), high sensitivity (0.2%/ppm), good linearity, excellent temperature, and humidity tolerances is fabricated by using polyacrylamide-chitosan (PAM-CS) double network (DN) organohydrogel as a novel transducing material. The PAM-CS DN organohydrogel is transformed from the PAM-CS composite hydrogel using a facile soaking and solvent replacement strategy. Compared with the pristine hydrogel, the DN organohydrogel displays greatly enhanced mechanical strength, moisture retention, freezing resistance, and sensitivity to oxygen. Notably, applying the tensile strain improves both the sensitivity and response speed of the organohydrogel-based oxygen sensor. Furthermore, the response to the same concentration of oxygen before and after self-healing is basically the same. Importantly, we propose an electrochemical reaction mechanism to explain the positive current shift of the oxygen sensor and corroborate this sensing mechanism through rationally designed experiments. The organohydrogel oxygen sensor is used to monitor human respiration in real-time, verifying the feasibility of its practical application. This work provides ideas for fabricating more stretchable, self-healable, self-adhesive, and high-performance gas sensors using ion-conducting organohydrogels.

5.
Small ; 17(52): e2104997, 2021 12.
Article in English | MEDLINE | ID: mdl-34672085

ABSTRACT

Here stretchable, self-healable, and transparent gas sensors based on salt-infiltrated hydrogels for high-performance NO2 sensing in both anaerobic environment and air at room temperature, are reported. The salt-infiltrated hydrogel displays high sensitivity to NO2 (119.9%/ppm), short response and recovery time (29.8 and 41.0 s, respectively), good linearity, low theoretical limit of detection (LOD) of 86 ppt, high selectivity, stability, and conductivity. A new gas sensing mechanism based on redox reactions occurring at the electrode-hydrogel interface is proposed to understand the sensing behaviors. The gas sensing performance of hydrogel is greatly improved by incorporating calcium chloride (CaCl2 ) in the hydrogel via a facile salt-infiltration strategy, leading to a higher sensitivity (2.32 times) and much lower LOD (0.06 times). Notably, both the gas sensing ability, conductivity, and mechanical deformability of hydrogels are readily self-healable after cutting off and reconnection. Such large deformations as 100% strain do not deprive the gas sensing capability, but rather shorten the response and recovery time significantly. The CaCl2 -infiltrated hydrogel shows excellent selectivity of NO2 , with good immunity to the interference gases. These results indicate that the salt-infiltrated hydrogel has great potential for wearable electronics equipped with gas sensing capability in both anaerobic and aerobic environments.


Subject(s)
Hydrogels , Wearable Electronic Devices , Electric Conductivity , Nitrogen Dioxide/analysis , Temperature
6.
ACS Appl Mater Interfaces ; 13(18): 21854-21864, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33908749

ABSTRACT

Conductive hydrogels can be used in wearable electronics integrated with skin, but the bulk structure of existing hydrogel-based temperature sensors limits the wearing comfort, response/recovery speeds, and sensitivity. Here, stretchable and transparent temperature sensors based on a novel thin-film sandwich structure (TFSS) are designed, which display unprecedented thermal sensitivity (24.54%/°C), fast response time (0.19 s) and recovery time (0.08 s), a broad detection range (from -28 to 95.3 °C), high resolution (0.8 °C), and high stability. The thin hydrogel layer (12.15 µm) is encapsulated by two thin elastomer layers, which prevent the water evaporation and enhance the heat transfer, leading to the boosted stability and accelerated response/recovery speeds. The nondrying and antifreezing capabilities are further promoted by the hydratable lithium bromide (LiBr) incorporated in the hydrogel, enabling it to avoid dehydration in an extremely arid environment and freeze below subzero temperatures (freezing point below -120 °C). A comparative study reveals that the thermal sensitivity displayed by the TFSS sensor in capacitance mode is several times higher than that in conventional conductance/resistance mode above room temperature. Importantly, a new mechanism based on a horizontal plate capacitance model is proposed to understand the high sensitivity by considering the permittivity and geometry variations of TFSS. The thin TFSS, stretchability and transparency enable the sensor to be conformally and comfortably attached to human skin for real-time and reliable monitoring of various human motions, physical states, skin temperature, etc., without affecting the appearance.


Subject(s)
Hydrogels , Temperature , Wearable Electronic Devices , Biosensing Techniques/methods , Elastomers , Electric Conductivity , Humans
7.
ACS Appl Mater Interfaces ; 12(21): 24218-24230, 2020 May 27.
Article in English | MEDLINE | ID: mdl-32374587

ABSTRACT

Specific geometric morphology and improved crystalline properties are of great significance for the development of materials in micro-nano scale. However, for high-melting molybdenum (Mo), it is difficult to get high-quality structures exhibiting a single-crystalline nature and preconceived morphology simultaneously. In this paper, a pyramid-shaped single-crystalline Mo nanostructure was prepared through a thermal evaporation technique, as well as a series of experimental controls. Based on detailed characterizations, the growth mechanism was demonstrated to follow a sequential process that includes MoO2 decomposition and Mo deposition, single-crystalline islands formation, layered nucleation, and competitive growth. Furthermore, the product was measured to show excellent physical properties. The prepared nanostructures exhibited strong nano-indentation hardness, elastic modulus, and tensile strength in mechanical measurements, which are much higher than those of the Mo bulks. In the measurement of electronic characteristics, the individual structures indicated very good electrical transport properties, with a conductance of ∼0.16 S. The prepared film with an area of 0.02 cm2 showed large-current electron emission properties with a maximum current of 33.6 mA and a current density of 1.68 A cm-2. Optical properties of the structures were measured to show obvious electromagnetic field localization and enhancement, which enabled it to have good surface enhanced Raman scattering (SERS) activity as a substrate material. The corresponding structure-response relationships were further discussed. The reported physical properties profit from the basic features of the Mo nanostructures, including the micro-nano scale, the single-crystalline nature in each grain, as well as the pyramid-shaped top morphology. The findings may provide a potential material for the research and application of micro-nano electrons and photons.

8.
ACS Appl Mater Interfaces ; 12(18): 20623-20632, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32297738

ABSTRACT

To address the low gas sensitivity of pristine graphene (Gr), chemical modification of Gr has been proved as a promising route. However, the existing chemical functionalization method imposes the utilization of toxic chemicals, increasing the safety risk. Herein, vitamin C (VC)-modified reduced graphene hydrogel (V-RGOH) is synthesized via a green and facile self-assembly process with the assistance of biocompatible VC molecules for high-performance NH3 and NO2 detection. The three-dimensional (3D) structured V-RGOH is highly sensitive to low-concentration NH3 and NO2 at room temperature. In comparison with those of the unmodified RGOH, the V-RGOH gas sensors display an order of magnitude higher sensitivity and much lower limit of detection, resulting from the enhanced interaction between VC and analytes. NH3 and NO2 with extremely low concentrations of 500 and 100 ppb are detected experimentally. Notably, imbedded microheaters are exploited to explore the temperature-dependent gas sensing properties, revealing the negative and positive impacts of temperature on the sensitivity and recovery speed, respectively. Notably, the V-RGOH sensor exhibits remarkable selectivity and linearity and a wide detection range. This work reveals the remarkable effects of chemical modification with biodegradable molecules and 3D structure design on improving the gas sensing performance of the Gr material.

9.
ACS Appl Mater Interfaces ; 12(16): 19069-19079, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32237715

ABSTRACT

It is essential to impart the thermal stability, high sensitivity, self-healing, and transparent attributes to the emerging wearable and stretchable electronics. Here, a facile solvent replacement strategy is exploited to introduce ethylene glycol/glycerol (Gly) in hydrogels for enhancing their thermal sensitivity and stability synchronously. For the first time, we find that the solvent plays a key role in the thermal sensitivity of hydrogels. By adjusting the water content in hydrogels using a simple dehydration treatment, the thermal sensitivity is raised to 13.1%/°C. Thanks to the ionic transport property and water-Gly binary solvent, the organohydrogel achieves an unprecedented thermal sensitivity of 19.6%/°C, which is much higher than those of previously reported stretchable thermistors. The mechanism for the thermal response is revealed by considering the thermally activated ion mobility and dissociation. The stretchable thermistors are conformally attached on curved surfaces for the practical monitoring of minute temperature change. Notably, the uncovered Gly-organohydrogel avoids drying and freezing at 70 and -18 °C, respectively, reflecting the excellent antidrying and antifreezing attributes. In addition, the organohydrogel displays ultrahigh stretchability (1103% strain), self-healing ability, and high transparency. This work sheds light on fabricating ultrasensitive and stretchable temperature sensors with excellent thermal stability by modulating the solvent of hydrogels.

10.
ACS Appl Mater Interfaces ; 12(2): 2634-2643, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-31894956

ABSTRACT

A facile, one-step hydrothermal route was exploited to prepare SnO2-decorated reduced graphene oxide hydrogel (SnO2/RGOH) with three-dimensional (3D) porous structures for NO2 gas detection. Various material characterizations demonstrate the effective deoxygenation of graphene oxide and in situ growth of rutile SnO2 nanoparticles (NPs) on 3D RGOH. Compared with the pristine RGOH, the SnO2/RGOH displayed much lower limit of detection (LOD) and an order of magnitude higher sensitivity, revealing the distinct impact of SnO2 NPs in improving the NO2-sensing properties. An exceptional low theoretical LOD of 2.8 ppb was obtained at room temperature. The p-n heterojunction formed at the interface between RGOH and SnO2 facilitates the charge transfer, improving both the sensitivity in NO2 detection and the conductivity of hybrid material. Considering that existing SnO2/RGO-based NO2 sensors suffer from great vulnerability to humidity, here we employed integrated microheaters to effectively suppress the response to humidity, with nearly unimpaired response to NO2, which boosted the selectivity. Notably, a flexible NO2 sensor was constructed on a liquid crystal polymer substrate with endurance to mechanical deformation. This work indicates the feasibility of optimizing the gas-sensing performance of sensors by combining rational material hybridization, 3D structural engineering with temperature modulation.

11.
ACS Appl Mater Interfaces ; 11(46): 43383-43392, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31709789

ABSTRACT

A multifunctional sensor comprising humidity, temperature, and flow detection capabilities is fabricated with a facile, single-layered device structure. A microheater based on serpentine Pt microlines plays key roles in both humidity and flow sensing at the hot state by introducing an efficient Joule heating effect, and meanwhile functions as a reliable thermistor at the cold state for accurate temperature measurement. For the first time, the strong temperature-dependent humidity-sensing properties of graphene oxide (GO) are revealed using the microheater platform. The GO-based humidity sensor displays ultrahigh sensitivity [124/% relative humidity (RH)], fast response time (3 s), wide detection range (8-95% RH) at room temperature, while the sensitivity drops at elevated temperatures, indicating the non-negligible temperature effect. Interestingly, a linear relationship between sensitivity and voltage is observed for the flow sensor, indicating the capability to manipulate sensitivity by conveniently modifying the voltage applied on the microheater. Because the three sensors work independently with distinguishable output signals, multiparametric sensing is enabled to monitor various human activities, such as respiration, noncontact sensation, and so forth. This work develops a simple, cost-effective, and useful multiparametric-sensing platform using a microheater for potential applications in the growing fields of internet of things, healthcare monitoring, and human-machine interfaces.

12.
ACS Sens ; 4(7): 1889-1898, 2019 07 26.
Article in English | MEDLINE | ID: mdl-31250650

ABSTRACT

Heteroatom-doping has been proved as an effective method to modulate the electronic, physical, and chemical properties of graphene (Gr). Developing a new strategy of heteroatom-doping for high-performance gas sensing is a pivotal issue. Here, we demonstrate novel Gr-based gas sensors through three-dimensional (3D)-structured B-/N-doping nanomaterials for high-performance NO2 sensing. The 3D porous B- and N-doped reduced graphene oxide hydrogels (RGOH) are synthesized via one-step hydrothermal self-assembly and employed as transducing materials to fabricate room-temperature high-performance chemiresistors. The systematic characterizations of the as-synthesized B- and N-RGOH clearly show the uniform doping of the B and N heteroatoms and the formation of B and N components with C/O. In comparison with the pristine RGOH counterpart, the 3D B- and N-RGOH sensors exhibit 38.9 and 18.0 times enhanced responses toward 800 ppb NO2, respectively, suggesting the remarkable doping effect of the heteroatoms in improving the sensitivity. Significantly, B- and N-RGOH display the exceptionally low limit of detection of 9 and 14 ppb NO2, respectively, which are much lower than the threshold limit recommended by the U.S. Environmental Protection Agency. In addition, the developed NO2 sensors show good linearity, reversibility, fast recovery, and impressive selectivity. This work opens up a new avenue to fabricate room-temperature and high-performance NO2 sensors by incorporating B and N heteroatoms into 3D RGOH via a convenient hydrothermal self-assembly approach.


Subject(s)
Graphite/chemistry , Hydrogels/chemistry , Nitrogen Dioxide/analysis , Boron/chemistry , Electrochemical Techniques/methods , Hydrogels/chemical synthesis , Limit of Detection , Nitrogen/chemistry , Porosity , Temperature
13.
Biochemistry ; 43(23): 7637-42, 2004 Jun 15.
Article in English | MEDLINE | ID: mdl-15182206

ABSTRACT

The human fragile histidine triad protein Fhit catalyzes the Mg(2+)-dependent hydrolysis of P(1)-5'-O-adenosine-P(3)-5'-O-adenosine triphosphate, Ap(3)A, to AMP and ADP. The reaction is thought to follow a two-step mechanism, in which the complex of Ap(3)A and Mg(2+) reacts in the first step with His96 of the enzyme to form a covalent Fhit-AMP intermediate and release MgADP. In the second step, the intermediate Fhit-AMP undergoes hydrolysis to AMP and Fhit. The mechanism is inspired by the chain-fold similarities of Fhit to galactose-1-phosphate uridylyltransferase, which functions by an analogous mechanism, and the observation of overall retention in configuration at phosphorus in the action of Fhit (Abend, A., Garrison, P. N., Barnes, L. D., and Frey, P. A. (1999) Biochemistry 38, 3668-3676). Direct evidence in support of this mechanism is reported herein. Reaction of Fhit with [8,8'-(3)H]-Ap(3)A and denaturation of the enzyme in the steady state leads to protein-bound tritium corresponding to 11% of the active sites. Similar experiments with the poor substrate MgATP leads to 0.9% labeling. The mutated protein H96G-Fhit is completely inactive against MgAp(3)A. However, it is chemically rescued by free histidine. H96G-Fhit also catalyzes the hydrolysis of adenosine-5'-phosphoimidazolide, AMP-Im, and of adenosine-5'-phospho-N-methylimidazolide, AMP-N-MeIm. The hydrolyses of AMP-Im and of AMP-N-MeIm by H96G-Fhit are thought to represent chemical rescue of the covalent Fhit-AMP intermediate. Wild-type Fhit is also found to catalyze the hydrolyses of AMP-Im and of AMP-N-MeIm nearly as efficiently as the hydrolysis of MgAp(3)A. The results indicate that Mg(2+) in the reaction of Ap(3)A is required for the first step, the formation of the covalent intermediate Fhit-AMP, and not for the hydrolysis of the intermediate in the second step.


Subject(s)
Acid Anhydride Hydrolases/isolation & purification , Acid Anhydride Hydrolases/metabolism , Neoplasm Proteins/isolation & purification , Neoplasm Proteins/metabolism , Acid Anhydride Hydrolases/chemistry , Acid Anhydride Hydrolases/genetics , Adaptor Protein Complex 3/metabolism , Adenosine Monophosphate/metabolism , Catalysis , Humans , Kinetics , Magnesium/metabolism , Mutagenesis, Site-Directed , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...