Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38598749

ABSTRACT

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by abnormal activation of CD4+ T cells and an imbalance of T helper 17 (Th17) and regulatory T (Treg) cells. Tolerogenic therapy via administration of self-antigens is a promising strategy for RA treatment, but delivery of autoantigens alone may exacerbate disease conditions. Current studies indicated that codelivery of autoantigens with immunomodulators can lead to a more tolerogenic immune response. Here, we constructed an autoantigen type II collagen peptide (CII250-270)- and immunomodulator leflunomide (LEF)-coloaded phosphatidylserine liposome vaccine (CII250-270-LEF-PSL) for RA treatment via induction of tolerant dendritic cells (tolDC) for further activation of Treg cells. The in vivo results showed that CII250-270-LEF-PSL can effectively induce tolDC, regulate the balance of Th1/Th2 and Th17/Treg, and reduce the secretion of pro-inflammatory cytokines (IFN-γ, IL-1ß, and IL-17A) and IgG antibodies to inhibit synovial inflammation and bone erosion. Furthermore, our study also suggested that LEF regulated Th1 cell differentiation by inhibiting the activation of the JAK1/STAT1 signaling pathway, further alleviating RA. Overall, this work proved that the combination of autoantigenic peptides and immunomodulators was a promising modality for RA treatment by reestablishing antigen-specific immune tolerance, which also inspired additional insights into the development of combination therapies for the tolerability of RA.

2.
J Drug Target ; 32(5): 485-498, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491993

ABSTRACT

The complement is an important arm of the innate immune system, once activated, the complement system rapidly generates large quantities of protein fragments that are potent mediators of inflammation. Recent studies have shown that over-activated complement is the main proinflammatory system of autoimmune diseases (ADs). In addition, activated complements interact with autoantibodies, immune cells exacerbate inflammation, further worsening ADs. With the increasing threat of ADs to human health, complement-based immunotherapy has attracted wide attention. Nevertheless, efficient and targeted delivery of complement inhibitors remains a significant challenge owing to their inherent poor targeting, degradability, and low bioavailability. Nanosystems offer innovative solutions to surmount these obstacles and amplify the potency of complement inhibitors. This prime aim to present the current knowledge of complement in ADs, analyse the function of complement in the pathogenesis and treatment of ADs, we underscore the current situation of nanosystems assisting complement inhibitors in the treatment of ADs. Considering technological, physiological, and clinical validation challenges, we critically appraise the challenges for successfully translating the findings of preclinical studies of these nanosystem assisted-complement inhibitors into the clinic, and future perspectives were also summarised. (The graphical abstract is by BioRender.).


Subject(s)
Autoimmune Diseases , Complement Inactivating Agents , Complement System Proteins , Humans , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Complement Inactivating Agents/administration & dosage , Complement Inactivating Agents/pharmacology , Animals , Complement System Proteins/immunology , Nanoparticles , Complement Activation/drug effects , Drug Delivery Systems , Immunotherapy/methods
3.
Int Immunopharmacol ; 116: 109740, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36696858

ABSTRACT

Autoimmune diseases are caused by the dysfunction of the body's immune regulatory system, which leads to the recognition of self-antigens and the destruction of self-tissues and is mediated by immune cells such as T and B cells, and affects 5-10% of the population worldwide. Current treatments such as non-steroidal anti-inflammatory drugs and glucocorticoids can only relieve symptoms of the disease and are accompanied by serious side effects that affect patient quality of life. The recent rise in antigen-specific therapies, especially vaccines carrying autoantigenic peptides, promises to change this disadvantage, where research has increased dramatically in the last decade. This therapy established specific immune tolerance by delivering peptide fragments containing disease-specific self-antigen epitopes to suppress excessive immune responses, thereby exerting a therapeutic effect, with high safety and specificity. This article presents the latest progress on the treatment of autoimmune diseases with autoantigen peptide vaccines. It includes the construction of peptide vaccine delivery system, the mechanism of inducing immune tolerance and its application.


Subject(s)
Autoimmune Diseases , Vaccines , Humans , Quality of Life , Immune Tolerance , Vaccines/therapeutic use , Autoantigens , Vaccines, Subunit/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...