Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 381(6657): 558-563, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37535726

ABSTRACT

Hafnium oxide-based ferroelectric materials are promising candidates for next-generation nanoscale devices because of their ability to integrate into silicon electronics. However, the intrinsic high coercive field of the fluorite-structure oxide ferroelectric devices leads to incompatible operating voltage and limited endurance performance. We discovered a complementary metal-oxide semiconductor (CMOS)-compatible rhombohedral ferroelectric Hf(Zr)1+xO2 material rich in hafnium-zirconium [Hf(Zr)]. X-ray diffraction combined with scanning transmission electron microscopy reveals that the excess Hf(Zr) atoms intercalate within the hollow sites. We found that the intercalated atoms expand the lattice and increase the in-plane and out-of-plane stresses, which stabilize both the rhombohedral phase (r-phase) and its ferroelectric properties. Our ferroelectric devices, which are based on the r-phase Hf(Zr)1+xO2, exhibit an ultralow coercive field (~0.65 megavolts per centimeter). Moreover, we achieved a high endurance of more than 1012 cycles at saturation polarization. This material discovery may help to realize low-cost and long-life memory chips.

2.
Science ; 372(6542): 630-635, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33858991

ABSTRACT

Unconventional ferroelectricity exhibited by hafnia-based thin films-robust at nanoscale sizes-presents tremendous opportunities in nanoelectronics. However, the exact nature of polarization switching remains controversial. We investigated a La0.67Sr0.33MnO3/Hf0.5Zr0.5O2 capacitor interfaced with various top electrodes while performing in situ electrical biasing using atomic-resolution microscopy with direct oxygen imaging as well as with synchrotron nanobeam diffraction. When the top electrode is oxygen reactive, we observe reversible oxygen vacancy migration with electrodes as the source and sink of oxygen and the dielectric layer acting as a fast conduit at millisecond time scales. With nonreactive top electrodes and at longer time scales (seconds), the dielectric layer also acts as an oxygen source and sink. Our results show that ferroelectricity in hafnia-based thin films is unmistakably intertwined with oxygen voltammetry.

3.
ACS Nano ; 15(2): 2869-2879, 2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33476130

ABSTRACT

Strain engineering as a method to control functional properties has seen in the last decades a surge of interest. Heterostructures comprising 2D-materials and containing van der Waals(-like) gaps were considered unsuitable for strain engineering. However, recent work on heterostructures based on Bi2Te3, Sb2Te3, and GeTe showed the potential of a different type of strain engineering due to long-range mutual straining. Still, a comprehensive understanding of the strain relaxation mechanism in these telluride heterostructures is lacking due to limitations of the earlier analyses performed. Here, we present a detailed study of strain in two-dimensional (2D/2D) and mixed dimensional (2D/3D) systems derived from mica/Bi2Te3, Sb2Te3/Bi2Te3, and Bi2Te3/GeTe heterostructures, respectively. We first clearly show the fast relaxation process in the mica/Bi2Te3 system where the strain was generally transferred and confined up to the second or third van der Waals block and then abruptly relaxed. Then we show, using three independent techniques, that the long-range exponentially decaying strain in GeTe and Sb2Te3 grown on the relaxed Bi2Te3 and Bi2Te3 on relaxed Sb2Te3 as directly observed at the growth surface is still present within these three different top layers a long time after growth. The observed behavior points at immediate strain relaxation by plastic deformation without any later relaxation and rules out an elastic (energy minimization) model as was proposed recently. Our work advances the understanding of strain tuning in textured heterostructures or superlattices governed by anisotropic bonding.

4.
ACS Appl Electron Mater ; 1(12): 2585-2593, 2019 Dec 24.
Article in English | MEDLINE | ID: mdl-32954356

ABSTRACT

Ultrathin Hf1-x Zr x O2 films have attracted tremendous interest since they show ferroelectric behavior at the nanoscale, where other ferroelectrics fail to stabilize the polar state. Their promise to revolutionize the electronics landscape comes from the well-known Si compatibility of HfO2 and ZrO2, which (in amorphous form) are already used as gate oxides in MOSFETs. However, the recently discovered crystalline ferroelectric phases of hafnia-based films have been grown on Si only in polycrystalline form. Better ferroelectric properties and improved quality of the interfaces have been achieved in epitaxially grown films, but these are only obtained on non-Si and buffered Si(100) substrates. Here, we report direct epitaxy of polar Hf1-x Zr x O2 phases on Si, enabled via in situ scavenging of the native a-SiO x layer by Zr (Hf), using pulsed laser deposition under ballistic deposition conditions. We investigate the effect of substrate orientation and film composition to provide fundamental insights into the conditions that lead to the preferential stabilization of polar phases, namely, the rhombohedral (r-) and the orthorhombic (o-) phases, against the nonpolar monoclinic (m-), on Si.

5.
Nat Mater ; 17(12): 1095-1100, 2018 12.
Article in English | MEDLINE | ID: mdl-30349031

ABSTRACT

Hafnia-based thin films are a favoured candidate for the integration of robust ferroelectricity at the nanoscale into next-generation memory and logic devices. This is because their ferroelectric polarization becomes more robust as the size is reduced, exposing a type of ferroelectricity whose mechanism still remains to be understood. Thin films with increased crystal quality are therefore needed. We report the epitaxial growth of Hf0.5Zr0.5O2 thin films on (001)-oriented La0.7Sr0.3MnO3/SrTiO3 substrates. The films, which are under epitaxial compressive strain and predominantly (111)-oriented, display large ferroelectric polarization values up to 34 µC cm-2 and do not need wake-up cycling. Structural characterization reveals a rhombohedral phase, different from the commonly reported polar orthorhombic phase. This finding, in conjunction with density functional theory calculations, allows us to propose a compelling model for the formation of the ferroelectric phase. In addition, these results point towards thin films of simple oxides as a vastly unexplored class of nanoscale ferroelectrics.

6.
J Phys Condens Matter ; 27(20): 206001, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25950614

ABSTRACT

The electronic and magnetic properties of the recently fabricated strontium vanadium perovskite oxyhydride are investigated by ab initio calculations. The role of the unusually ordered hydrogen ions are carefully analyzed. The hydrogen ions break the crystal symmetry to change the degeneracy of the V t(2g) orbit, thus inducing magnetic transitions from the paramagnetism of parent oxides to the antiferromagnetism of oxyhydride. The low dimension behaviors would been expected because of the nonbonding nature between the V t(2g) and H s orbitals due to symmetry. Moreover, our results indicate that the direct hoppings of the nearest neighboring two V t(2g) orbitals and the indirect hoppings mediated by Sr ions should be essential to understanding the electronic and magnetic properties of the perovskite oxyhydride.

SELECTION OF CITATIONS
SEARCH DETAIL
...