Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
J Ethnopharmacol ; 329: 118130, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38565407

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Psoraleae Fructus (Bu Gu Zhi) is the fruit of Psoralea corylifolia L. (PCL) and has been used for centuries in traditional Chinese medicine formulas to treat osteoporosis (OP). A new drug called "BX" has been developed from PCL, but its mechanism for treating OP is not yet fully understood. AIM OF THE STUDY: To explore the mechanism of action of BX in the treatment of ovariectomy-induced OP based function-oriented multi-omics analysis of gut microbiota (GM) and metabolites. MATERIALS AND METHODS: C57BL/6 mice were bilaterally ovariectomized to replicate the OP model. The therapeutic efficacy of BX was evaluated by bone parameters (BMD, BV/TV, Tb.N, Tb.Sp), hematoxylin and eosin (H&E) staining results, and determination of bone formation markers procollagen type Ⅰ amino-terminal peptide (PⅠNP) and bone-specific alkaline phosphatase (BALP). Serum and fecal metabolomics and high-throughput 16S rDNA sequencing were performed to evaluate effects on endogenous metabolites and GM. In addition, an enzyme-based functional correlation algorithm (EBFC) algorithm was used to investigate functional correlations between GM and metabolites. RESULTS: BX improved OP in OVX mice by increasing BMD, BV/TV, serum PⅠNP, BALP, and improving Tb.N and Tb.Sp. A total of 59 differential metabolites were identified, and 9 metabolic pathways, including arachidonic acid metabolism, glycerophospholipid metabolism, purine metabolism, and tryptophan metabolism, were found to be involved in the progression of OP. EBFC analysis results revealed that the enzymes related to purine and tryptophan metabolism, which are from Lachnospiraceae_NK4A136_group, Blautia, Rs-E47_termite_group, UCG-009, and Clostridia_UCG-014, were identified as the intrinsic link between GM and metabolites. CONCLUSIONS: The regulation of GM and restoration of metabolic disorders may be the mechanisms of action of BX in alleviating OP. This research provides insights into the function-oriented mechanism discovery of traditional Chinese medicine in the treatment of OP.


Subject(s)
Coumarins , Gastrointestinal Microbiome , Mice, Inbred C57BL , Osteoporosis , Ovariectomy , Psoralea , Animals , Psoralea/chemistry , Female , Osteoporosis/drug therapy , Coumarins/pharmacology , Coumarins/isolation & purification , Coumarins/therapeutic use , Gastrointestinal Microbiome/drug effects , Mice , Bone Density/drug effects , Metabolomics , Disease Models, Animal , Fruit , Multiomics
2.
Front Pharmacol ; 15: 1352373, 2024.
Article in English | MEDLINE | ID: mdl-38567350

ABSTRACT

Prostate cancer (PCa) is a common malignant tumor, whose morbidity and mortality keep the top three in the male-related tumors in developed countries. Abnormal ion channels, such as transient receptor potential canonical 6 (TRPC6), are reported to be involved in the carcinogenesis and progress of prostate cancer and have become potential drug targets against prostate cancer. Here, we report a novel small molecule inhibitor of TRPC6, designated as PCC0208057, which can suppress the proliferation and migration of prostate cancer cells in vitro, and inhibit the formation of Human umbilical vein endothelial cells cell lumen. PCC0208057 can effectively inhibit the growth of xenograft tumor in vivo. Molecular mechanism studies revealed that PCC0208057 could directly bind and inhibit the activity of TRPC6, which then induces the prostate cancer cells arrested in G2/M phase via enhancing the phosphorylation of Nuclear Factor of Activated T Cells (NFAT) and Cdc2. Taken together, our study describes for the first time that PCC0208057, a novel TRPC6 inhibitor, might be a promising lead compound for treatment of prostate cancer.

3.
Biochem Biophys Rep ; 37: 101653, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38352122

ABSTRACT

Left ventricular noncompaction cardiomyopathy (LVNC) is a cardiovascular disease characterized by arrhythmia and heart failure. In this study, LVNC myocardial samples were collected from patients who underwent heart transplantation and were analyzed using exome sequencing. Approximately half of the LVNC patients carried SCN5A variants, which are associated with clinical symptoms of ventricular tachycardia. To investigate the electrophysiological functions of these SCN5A variants and the underlying mechanism by which they increase arrhythmia susceptibility in LVNC patients, functional evaluations were conducted in CHO-K1 cells and human embryonic stem cell-derived cardiomyocytes (hESC-CMs) using patch-clamp or microelectrode array (MEA) techniques. These findings demonstrated that these SCN5A mutants exhibited gain-of-function properties, leading to increased channel activation and enhanced fast inactivation in CHO-K1 cells. Additionally, these mutants enhanced the excitability and contractility of the cardiomyocyte population in hESC-CMs models. All SCN5A variants induced fibrillation-like arrhythmia and increased the heart rate in cardiomyocytes. However, the administration of Lidocaine, an antiarrhythmic drug that acts on sodium ion channels, was able to rescue or alleviate fibrillation-like arrhythmias and secondary beat phenomenon. Based on these findings, it is speculated that SCN5A variants may contribute to susceptibility to arrhythmia in LVNC patients. Furthermore, the construction of cardiomyocyte models with SCN5A variants and their application in drug screening may facilitate the development of precise therapies for arrhythmia in the future.

4.
J Pharm Biomed Anal ; 240: 115957, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38181555

ABSTRACT

Epimedium is a Chinese herbal medicine commonly used in clinical practice to reinforce yang. Previous studies have shown that Epimedium fried with suet oil based has the best effect on warming kidney and promoting yang. Evidence suggests a relationship between kidney yang deficiency syndrome (KYDS) and metabolic disorders of the intestinal microflora. However, the specific interaction between KYDS and the intestinal microbiome, as well as the internal regulatory mechanism of the KYDS intestinal microbiome regulated by Epimedium fried with suet oil, remain unclear. The purpose of this study was to investigate the regulatory effects of different processed products of Epimedium on intestinal microflora and metabolites in rats with kidney yang deficiency, and to reveal the processing mechanism of Epimedium fried with suet oil warming kidney and helping yang. 16 S rRNA and LC-MS/MS technology were used to detect fecal samples. Combined with multivariate statistical analysis, differential intestinal flora and metabolites were screened. Then the content of differential bacteria was then quantified using quantitative real-time fluorescence PCR. Furthermore, the correlation between differential bacterial flora and metabolites was analyzed using Spearman's method. The study found that the composition of intestinal flora in rats with kidney yang deficiency changed compared to healthy rats. Epimedium fried with suet oil could increase the levels of beneficial bacteria, while significantly reducing the levels of harmful bacteria. Real-time quantitative PCR results were consistent with 16 S rRNA gene sequencing analysis. Fecal metabolomics revealed that KYDS was associated with 30 different metabolites, involving metabolic pathways steroid hormone biosynthesis etc. Moreover, differential bacteria were closely correlated with potential biomarkers. Epimedium could improve metabolic disorders associated with KYDS by acting on the intestinal flora, with Epimedium fried with suet oil demonstrating the most effective regulatory effect. Its potential mechanism may involve the regulation of abnormal metabolism and the impact on the diversity and structure of the intestinal flora.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Gastrointestinal Microbiome , Metabolic Diseases , Rats , Animals , Yang Deficiency/drug therapy , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use , Drugs, Chinese Herbal/chemistry , Epimedium/chemistry , Chromatography, Liquid , Tandem Mass Spectrometry , Metabolomics , Kidney/metabolism
5.
Int Immunopharmacol ; 125(Pt A): 111144, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37922569

ABSTRACT

Hepatic fibrosis (HF) is a challenging clinical problem. Both sodium alginate (SA) and oxymatrine (OM) can be used to treat HF; however, the influence of viscosity on the therapeutic efficacy of sodium alginate is currently unknown. This study used a CCl4-induced HF mouse model to screen the specifications and doses of SA and investigate its therapeutic effects on HF in combination with OM. Sodium alginate of different viscosities ameliorated HF in mice, with 232 mPa·s SA delivered at a dose of 100 mg/kg showing remarkable therapeutic effect, characterized by reduced aspartate transaminase/alanine transaminase levels, reduced expression of α-SMA, collagen I, and other related genes, and increased abundance of beneficial intestinal probiotics such as Lactococcus and Blautia. The combination treatment further improved other related indices and increased the abundance of Phascolarctobacterium and Oscillospiraceae. These results suggest that the oral administration of SA may improve HF via the "gut-liver axis" based on the gut microbiota and has potential clinical applications.


Subject(s)
Alginates , Alkaloids , Rats , Mice , Animals , Alginates/therapeutic use , Rats, Sprague-Dawley , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver/pathology , Alkaloids/pharmacology , Carbon Tetrachloride/pharmacology
6.
Environ Sci Pollut Res Int ; 30(43): 97404-97415, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37594716

ABSTRACT

Mineral oils are used in substantial quantities for the production of varnishes and inks due to their abundance and versatility. However, as part of the production process, some of mineral oil components are separated as waste material, whereupon they can mix with air, water, or soil and become potentially harmful to the environment. Almost all these waste materials are volatile organic compounds (VOCs), chemicals that can easily evaporate at room temperature and have toxic effect. Therefore, a novel green, mineral oil-free offset printing ink was produced using vegetable oil esters as bio-renewable raw materials. Accompanying varnishes were prepared with linseed oil, methyl oleate, octyl stearate, and four types of resin (A, B, C, and D). The application of these varnishes to magenta color offset ink was subsequently studied to screen out the best combination of resin and ester in terms of setting time. Meanwhile, dyeing force tests were conducted to evaluate the ink's printability, while rheological analysis was done via viscosity and flowability tests. The setting time of the magenta color offset ink made by varnish A was observed to be considerably shorter than that of the ink samples prepared using varnishes B, C, and D. Furthermore, varnish A proved to be a good alternative varnish for the production of yellow, cyan, and black color offset printing inks. Samples of these inks were printed on coated paper, and their printability was contrasted against that of vegetable oil-based (pure vegetable oil), mineral oil-based, and other mineral oil-free offset printing inks. Results determined that the varnishes produced with linseed oil, methyl oleate, and octyl stearate can replace mineral oil-based varnishes for the production of offset printing ink.


Subject(s)
Linseed Oil , Plant Oils , Esters , Ink , Mineral Oil , Minerals , Resins, Plant , Rosaniline Dyes
7.
Sci Rep ; 13(1): 4055, 2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36906657

ABSTRACT

A prediction interval (PI) method is developed to quantify the model uncertainty of embankment settlement prediction. Traditional PIs are constructed based on specific past period information and remain unchanged; hence, they neglect discrepancies between previous calculations and new monitoring data. In this paper, a real-time prediction interval correction method is proposed. Time-varying PIs are built by continuously incorporating new measurements into model uncertainty calculations. The method consists of trend identification, PI construction, and real-time correction. Primarily, trend identification is carried out by wavelet analysis to eliminate early unstable noise and determine the settlement trend. Then, the Delta method is applied to construct PIs based on the characterized trend, and a comprehensive evaluation index is introduced. The model output and the upper and lower bounds of the PIs are updated by the unscented Kalman filter (UKF). The effect of the UKF is compared with that of the Kalman filter (KF) and extended Kalman filter (EKF). The method was demonstrated in the Qingyuan power station dam. The results show that the time-varying PIs based on trend data are smoother than those based on original data with better evaluation index scores. Also, the PIs are not affected by local anomalies. The proposed PIs are consistent with the actual measurements, and the UKF performs better than the KF and EKF. The approach has the potential to provide more reliable embankment safety assessments.

8.
Nat Prod Res ; : 1-10, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36724800

ABSTRACT

Sagittatoside B is one of the principal diglucosides in Herba Epimedii. In this work, an ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) was applied to the rapid analysis of sagittatoside B metabolites in rats after oral administration. A total number of 17 metabolites were detected or tentatively identified from rat plasma, bile, urine and feces. The major metabolic pathways of sagittatoside B in rats were hydrolysis, hydrogenation, hydroxylation, dehydrogenation, demethylation, decarbonylation and conjugation with glucuronic acid and different sugars. This work revealed the metabolism of sagittatoside B in vivo, and reported the characteristic metabolic reactions of sagittatoside B for the first time. This provided the basis for the further research and development of sagittatoside B, and also provided reference for the metabolism of active flavonoid compounds.

9.
Front Pharmacol ; 14: 1113213, 2023.
Article in English | MEDLINE | ID: mdl-36762111

ABSTRACT

Introduction: Epimedium, a traditional Chinese medicine (TCM) commonly used in ancient and modern China, is one of the traditional Chinese medicines clinically used to treat kidney yang deficiency syndrome (KYDS). There are differences in the efficacy of Epimedium before and after processing, and the effect of warming the kidney and enhancing yang is significantly enhanced after heating with suet oil. However, the active compounds, corresponding targets, metabolic pathways, and synergistic mechanism of frying Epimedium in suet oil to promote yang, remain unclear. Methods: Herein, a strategy based on comprehensive GC-TOF/MS metabolomics and network pharmacology analysis was used to construct an "active compounds-targets-metabolic pathways" network to identify the active compounds, targets and metabolic pathways involved. Subsequently, the targets in kidney tissue were further validated by real-time quantitative polymerase chain reaction (RT-qPCR). Histopathological analysis with physical and biochemical parameters were performed. Results: Fifteen biomarkers from urine and plasma, involving five known metabolic pathways related to kidney yang deficiency were screened. The network pharmacology results showed 37 active compounds (13 from Epimedium and 24 from suet oil), 159 targets, and 267 pathways with significant correlation. Importantly, integrated metabolomics and network pharmacologic analysis revealed 13 active compounds (nine from Epimedium and four from suet oil), 7 corresponding targets (ALDH2, ARG2, GSTA3, GSTM1, GSTM2, HPGDS, and NOS2), two metabolic pathways (glutathione metabolism, arginine and proline metabolism), and two biomarkers (Ornithine and 5-Oxoproline) associated with improved kidney yang deficiency by Epimedium fried with suet oil. Discussion: These finds may elucidate the underlying mechanism of yang enhancement via kidney warming effects. Our study indicated that the mechanism of action mainly involved oxidative stress and amino acid metabolism. Here, we demonstrated the novel strategies of integrating metabolomics and network pharmacology in exploring of the mechanisms of traditional Chinese medicines.

10.
Biomater Res ; 26(1): 77, 2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36494759

ABSTRACT

BACKGROUND: Combination of chemotherapy and immune checkpoint inhibitor therapy has greatly improved the anticancer effect on multiple malignancies. However, the efficiency on triple-negative breast cancer (TNBC) is limited, since most patients bear "cold" tumors with low tumor immunogenicity. Doxorubicin (DOX), one of the most effective chemotherapy agents, can induce immunogenic cell death (ICD) and thus initiating immune response. METHODS: In this study, to maximize the ICD effect induced by DOX, chitosan and cell-penetrating peptide (R6F3)-modified nanoparticles (PNPs) loaded with ginsenoside Rg3 (Rg3) were fabricated using the self-assembly technique, followed by co-encapsulation with DOX based on thermo-sensitive hydrogel. Orthotopic tumor model and contralateral tumor model were established to observe the antitumor efficacy of the thermo-sensitive hydrogel combined with anti-PD-L1 immunotherapy, besides, the biocompatibility was also evaluated by histopathological. RESULTS: Rg3-PNPs strengthened the immunogenic cell death (ICD) effect induced by DOX. Moreover, the hydrogel co-loading Rg3-PNPs and DOX provoked stronger immune response in originally nonimmunogenic 4T1 tumors than DOX monotherapy. Following combination with PD-L1 blocking, substantial antitumor effect was achieved due to the recruitment of memory T cells and the decline of adaptive PD-L1 enrichment. CONCLUSION: The hydrogel encapsulating DOX and highly permeable Rg3-PNPs provided an efficient strategy for remodeling immunosuppressive tumor microenvironment and converting immune "cold" 4T1 into "hot" tumors.

11.
Materials (Basel) ; 15(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35629510

ABSTRACT

A sealing grease plays a crucial role in the sealing of shield tails. Its pumpability and pressure sealing resistant sealing performance are greatly affected by the fiber content. In this study, discrete element method models were used to simulate the pressure-resistant tests of sealing grease in order to investigate the influence of viscosity grade and fiber's aspect ratio on the optimum fiber content of sealing grease. Meanwhile, the rationality of the optimum fiber number determined based on the sealing performance was verified with the unbalanced force and fiber area proportion obtained in the simulation, of which the variation curves with the increasing fiber number were practically identical. The simulation results elucidated that the viscosity of grease had little effect on the optimum fiber content for sealing grease. However, the increase in viscosity can improve the sealing effect, and increasing the fiber's aspect ratio can reduce the fiber number to reach a specific seal state. Based on the analysis of the total number of fiber spheres for the models with different fiber's respect ratios, it can be concluded that the sealing grease sample made of the same fiber material and quality can reach the same seal state and seal effect, independent on fiber's aspect ratio.

12.
J Pharm Biomed Anal ; 210: 114574, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34999432

ABSTRACT

In present study, a comprehensive strategy integrating multiple chromatographic and chemometric methods to simultaneously characterize the volatile and non-volatile components was developed for the holistic quality evaluation of commercial Agastache rugosa (AR), a common edible and medicinal herb, collected in China. The volatile components and the non-volatile components were characterized by GC-MS and UPLC-QTOF-MS/MS, respectively. And the data were analyzed either independently or integratively by multivariate statistical analysis (MVS) for the quality assessment of commercial samples. The results revealed that the commercial AR samples were different in both the composition and the content of volatile components. However, the compositions of non-volatile components in commercial AR were generally similar, whereas the contents of some components were different. All the results indicated that the holistic quality of commercial AR was inconsistent, and the commercial samples collected could be classified into two main groups, the volatile components were majorly responsible for the classification. Whether or not the holistic quality variations affect the efficacy of AR deserves further investigation.


Subject(s)
Agastache , Plants, Medicinal , Chemometrics , Gas Chromatography-Mass Spectrometry , Tandem Mass Spectrometry
13.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 30.
Article in English | MEDLINE | ID: mdl-36678550

ABSTRACT

Colorectal cancer is one of the most common malignancies, and the topoisomerase inhibitor irinotecan (CPT-11)-based chemotherapeutic regimen is currently the first-line treatment with impressive therapeutic efficacy. However, irinotecan has several clinically significant side effects, including diarrhea, which limit its clinical utility and efficacy in many patients. In an effort to discover better and improved pharmacotherapy against colorectal cancer, we synthesized a novel topoisomerase inhibitor, PCC0208037, examined its anti-tumor efficacy and related molecular mechanisms, and characterized its toxicity and pharmacokinetic profiles. PCC0208037 suppressed colorectal cancer cell (CRC) proliferation and increased cell cycle arrest, which may be related to its effects on up-regulating DNA damage response (DDR)-related molecules and apoptosis-related proteins. PCC0208037 demonstrated robust anti-tumor activity in vivo in a colorectal cancer cell xenograft model, which was comparable to or slightly better than CPT-11. In a preliminary toxicology study, PCC0208037 demonstrated much weaker tissue damage to colorectal tissue than CPT-11, and its impacts on food intake and body weight loss were more transient and recovered faster than CPT-11 in mice. This could be partially explained by the pharmacokinetic findings, which showed that PCC0208037 and its active metabolite, SN-38, were more accumulated in tumor tissue than in the intestine, as compared to CPT-11. Taken together, these results described a novel Topo I inhibitor with a comparative advantage over the standard treatment of colorectal cancer CPT-11 and could be a promising candidate compound for the treatment of colorectal cancer that warrants further investigation.

14.
Toxicol Lett ; 353: 34-42, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34627953

ABSTRACT

Gelsemine (GA), the principal alkaloid in Gelsemium elegans Benth, exhibits potent and specific antinociception in chronic pain without the induction of apparent tolerance. However, GA also exerts neurotoxicity and hepatotoxicity when overdosed, and potential detoxification pathways are urgently needed. Cytochrome P450 enzymes (CYPs) are important phase I enzymes involved in the detoxification of xenobiotic compounds. The study aimed to investigate the role of CYPs-mediated metabolism in GA-induced toxicity. Microsomes, chemical special inhibitors and human recombinant CYPs indicated that GA was mainly metabolized by CYP3A4/5. The major metabolite of GA was isolated and identified as 4-N-demethyl-GA by high-resolution mass spectrometry and nuclear magnetic resonance technology. The CYP3A4 inhibitor ketoconazole significantly inhibited the metabolism of GA. This drastically increased GA toxicity which is caused by increasing the level of malondialdehyde and decreasing the level of the superoxide dismutase in mice. In contrast, the CYP3A4 inducer dexamethasone significantly increased GA metabolism and markedly decreased GA toxicity in mice. Notably, in CYP3A4-humanized mice, the toxicity of GA was significantly reduced compared to normal mice. These findings demonstrated that CYP3A4-mediated metabolism is a robust detoxification pathway for GA-induced toxicity.


Subject(s)
Alkaloids/toxicity , Cytochrome P-450 CYP3A/metabolism , Animals , Cell Line , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Dexamethasone/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Glucocorticoids/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
15.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 593-600, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33792654

ABSTRACT

CMYA1 (cardiomyopathy-associated protein 1, also termed Xin) localizes to the intercalated disks (ICDs) of the myocardium and functions to maintain ICD structural integrity and support signal transduction among cardiomyocytes. Our previous study showed that CMYA1 overexpression impairs the function of gap junction intercellular communication processes. Successful model generation was verified based on PCR, western blot analysis, immunohistochemistry, and immunofluorescence analysis. Myocardial CMYA1 expression was confirmed at both the mRNA and the protein levels in the CMYA1-OE transgenic mice. Masson's trichrome staining and electron microscopy revealed myocardial fibrosis and uneven bead width or the interruption of ICDs in the hearts of the CMYA1-OE transgenic mice. Furthermore, the Cx43 protein level was reduced in the CMYA1-OE mice, and co-immunoprecipitation assays of heart tissue protein extracts revealed a physical interaction between CMYA1 and Cx43. Electrocardiogram analysis enabled the detection of an obvious ventricular bigeminy for the CMYA1-OE mice. In summary, analysis of our mouse model indicates that elevated CMYA1 levels may induce myocardial fibrosis, impair ICDs, and downregulate the expression of Cx43. The observed ventricular bigeminy in the CMYA1-OE mice may be mediated by the reduced Cx43 protein level.


Subject(s)
Cytoskeletal Proteins/biosynthesis , DNA-Binding Proteins/biosynthesis , Gene Expression Regulation , Myocardium/metabolism , Animals , Connexin 43/biosynthesis , Connexin 43/genetics , Cytoskeletal Proteins/genetics , DNA-Binding Proteins/genetics , Female , Fibrosis , Mice , Mice, Transgenic , Myocardium/pathology
16.
ACS Omega ; 6(13): 9196-9203, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33842788

ABSTRACT

Transient receptor potential canonical channel 6 (TRPC6) has been implicated in many kinds of malignant tumors, but very few potent TRPC6 antagonists are available. In this study, a benzothiazole amide derivative 1a was discovered as a TRPC6 activator in a cell-based high-throughput screening. A series of benzothiazole amide derivatives were designed and synthesized. The docking analyses indicated that the conformations of the compounds bound to TRPC6 determined the agonistic or antagonistic activity of the compounds against TRPC6, and compound 1s with the tetrahydronaphthalene group in R1 position fit well into the binding pocket of the antagonist-bound conformation of TRPC6. Compound 1s showed an inhibitory potency order of TRPC3 (IC50 3.3 ± 0.13 µM) ≈ C6 (IC50 4.2 ± 0.1 µM) > C7 with good anti-gastric cancer activity in a micromolecular range against AGS and MKN-45, respectively. In addition, 1s inhibited the invasion and migration of MKN-45 cells in vitro.

18.
ISA Trans ; 105: 111-119, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32536369

ABSTRACT

This paper studies the leader-following formation control problem of multiple underactuated autonomous underwater vehicles (AUVs) under uncertain dynamics and limited control torques. A multi-layer neural network-based estimation model is designed to handle the unknown follower dynamics. The backstepping approach, a neural estimation model, as well as a saturation function, are employed to propose a bounded formation control law. Then, a Lyapunov-based stability analysis ensures a maximum bound for all the closed-loop system variables and guarantees that the formation errors between vehicles ultimately converge to a bounded compact set. The outstanding properties of the designed controller are highlighted as follows. First, only the leader position and given formation are required without any leader velocity information requirement. Second, update laws of the neural network weight are extracted using the estimation errors instead of tracking ones, which can effectively enhance the transient characteristics of the control system. Third, the control torques are bounded within predefined bounds. At the end, extensive simulations are given for a number of AUVs to verify the efficiency of the presented formation control scheme.

19.
Mol Plant Pathol ; 21(7): 951-960, 2020 07.
Article in English | MEDLINE | ID: mdl-32394633

ABSTRACT

bsr-d1, an allele encoding a transcription factor identified from the rice cultivar Digu, confers durable, broad-spectrum resistance to infections by strains of Magnaporthe oryzae. bsr-d1 was predicted to inhibit M. oryzae-induced expression of Bsr-d1 RNA and degradation of hydrogen peroxide to achieve resistance to M. oryzae. However, the global effect of biological process and molecular function on blast resistance mediated by Bsr-d1 remains unknown. In this study, we compared transcriptomic profiling between Bsr-d1 knockout (Bsr-d1KO) lines and the wild type, TP309. Our study revealed that bsr-d1 mainly regulates the redox state of plant cells, but also affects amino acid and unsaturated fatty acid metabolism. We further found that BSR-D1 indirectly regulates salicylic acid biosynthesis, metabolism, and signal transduction downstream of the activation of H2 O2 signalling in the bsr-d1-mediated immune response. Furthermore, we identified a novel peroxidase-encoding gene, Perox3, as a new BSR-D1 target gene that reduces resistance to M. oryzae when overexpressed in TP309. These results provide new insights into the bsr-d1-mediated blast resistance.


Subject(s)
Ascomycota , Oryza/microbiology , Plant Diseases/microbiology , Plant Proteins/metabolism , Transcription Factors/metabolism , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Profiling , Gene Knockout Techniques , Oryza/enzymology , Oryza/genetics , Oryza/immunology , Peroxidase/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Plant Proteins/genetics , Transcription Factors/genetics
20.
Biochem Biophys Res Commun ; 527(4): 847-853, 2020 07 05.
Article in English | MEDLINE | ID: mdl-32430170

ABSTRACT

Bone marrow mesenchymal stem cells (BMSCs) derived from cyanotic congenital heart disease (CCHD) exhibit deficient multi-lineage differentiation potential due to the abnormal accumulation of D-galactose. However, the underlying mechanisms have not yet been explored. Here, the multi-lineage differentiation potential of the BMSCs from CCHD and non-CCHD (NCHD) patients were assessed. BMSCs from CCHD patients exhibited inferior multi-lineage differentiation potential with reduced Notch1 protein and mRNA level. Bisulfite sequencing PCR results showed the methylation level of Notch1 promoter was raised, which inhibited the binding of NF-Ya. Exposure BMSCs from NCHD patients with D-galactose under hypoxia (4% O2) decreased the expression of Notch1. And activating Notch1 partially restored the deficient BMSCs of CCHD patients. In conclusion, the impaired multi-lineage differentiation potential of BMSCs from CCHD patients is owing to the decreased Notch1 level with a remarkable hypermethylation in its promoter region. Activated Notch1 signaling pathway could partially restore the deficient BMSCs in the CCHD patients, which may provide a new method on cell therapy in patients with CCHD.


Subject(s)
Heart Defects, Congenital/pathology , Mesenchymal Stem Cells/pathology , Receptor, Notch1/metabolism , Signal Transduction , Cells, Cultured , Child , Child, Preschool , DNA Methylation , Down-Regulation , Female , Heart Defects, Congenital/genetics , Heart Defects, Congenital/metabolism , Humans , Infant , Male , Mesenchymal Stem Cells/metabolism , Promoter Regions, Genetic , Receptor, Notch1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...