Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(25): 9646-9653, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37311071

ABSTRACT

Fluorescent rotors with aggregation-induced emission (AIE) and organelle-targeting properties have attracted great attention for sensing subcellular viscosity changes, which could help understand the relationships of abnormal fluctuations with many associated diseases. Despite the numerous efforts spent, it remains rare and urgent to explore the dual-organelle targeting probes and their structural relationships with viscosity-responsive and AIE properties. Therefore, in this work, we reported four meso-five-membered heterocycle-substituted BODIPY-based fluorescent probes, explored their viscosity-responsive and AIE properties, and further investigated their subcellular localization and viscosity-sensing applications in living cells. Interestingly, the meso-thiazole probe 1 showed both good viscosity-responsive and AIE (in pure water) properties and could successfully target both mitochondria and lysosomes, further imaging cellular viscosity changes by treating lipopolysaccharide and nystatin, attributing to the free rotation and potential dual-organelle targeting ability of the meso-thiazole group. The meso-benzothiophene probe 3 with a saturated sulfur only showed good viscosity-responsive properties in living cells with the aggregation-caused quenching effect and no subcellular localization. The meso-imidazole probe 2 showed the AIE phenomenon without an obvious viscosity-responsive property with a C═N bond, while the meso-benzopyrrole probe 4 displayed fluorescence quenching in polar solvents. Therefore, for the first time, we investigated the structure-property relationships of four meso-five-membered heterocycle-substituted BODIPY-based fluorescent rotors with viscosity-responsive and AIE properties, and among these, 1 with a C═N bond and a saturated sulfur on the meso-thiazole, potentially contributing to their corresponding AIE and viscosity-responsive properties, served as a sensitive AIE fluorescent rotor for imaging dual-organelle viscosity in both mitochondria and lysosomes.


Subject(s)
Fluorescent Dyes , Organelles , Fluorescent Dyes/chemistry , Viscosity , Diagnostic Imaging
2.
Phys Rev E ; 106(4-1): 044204, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36397517

ABSTRACT

Numerical simulations are used to examine the dynamics of the dc-driven Frenkel-Kontorova model with an oscillation substrate subjected to lateral periodic excitations in overdamped and underdamped cases, respectively. The results reveal that the system exhibits frequency locking and chaotic behaviors due to the fact that the lateral vibration of the substrate potential introduces an additional frequency and degree of freedom into the system. In the overdamped case, we show that the appearance of subharmonic Shapiro steps can be attributed to the deformation of the substrate potential or inertia. The characteristics of the steps are significantly affected by the amplitude and frequency of the lateral vibration. When the vibration frequency is relatively high, the change of the width of the first harmonic Shapiro step with increasing amplitude exhibits a Bessel-type oscillation, but the oscillation deviates from the Bessel curve at lower frequencies. In the amplitude dependence, although the oscillatory behavior of the critical depinning force at the high frequency is anomalous, local maxima (minima) of the first step width correspond to local minima (maxima) of the critical depinning force, and the largest Lyapunov exponent obtained in the pinned state represents a mirror relationship of the critical depinning force. In contrast to the overdamped system, the underdamped one exhibits both subharmonic Shapiro steps and chaotic behaviors. We show the increased inertia of the latter system plays an important role in suppressing the emergence of subharmonic steps, which is opposite to the result of the former. When the dc force changes, chaos appears not only between adjacent subharmonic Shapiro steps but also on some specific steps where chaos should be avoided. The variation regularity of the first step width and the critical depinning force is thus annihilated in vibration amplitude and frequency dependence. However, superlubricity can be achieved by careful adjustment of vibration amplitude and frequency. The findings can serve as a theoretical guideline for technological applications such as device building and voltage standards.

3.
Appl Opt ; 61(23): 6834-6840, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-36255763

ABSTRACT

A microwave photonics instantaneous frequency measurement scheme with 14 channels based on an optical frequency comb (OFC) is proposed. In this scheme, a 14-line flat OFC is generated by cascading a dual-parallel Mach-Zehnder modulator (DPMZM) with a Mach-Zehnder modulator (MZM). The intercepted microwave signal with multiple-frequency components can be measured by using DPMZM, Fabry-Perot filter (FPF), wavelength division multiplexer (WDM), and optical power detector array. This scheme can measure and analyze the frequency of microwave signals in the ranges of 0.5-13.5 GHz, 13.5-26.5 GHz, and 26.5-39.5 GHz with the measurement accuracy of ±0.5GHz. The reconfigurability of the system can be realized by adjusting the comb-line spacing of the OFC and the free spectral range (FSR) of the FPF.

4.
Anal Chem ; 94(42): 14707-14715, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36222313

ABSTRACT

Meso-substituted boron dipyrromethenes (BODIPYs) provide a potential and innovative strategy for the synergistic construction of aggregation-induced emission (AIE) probes and fluorescent rotors for monitoring cellular viscosity changes, which play critical roles in understanding the function of viscosity in its closely associated diseases. Therefore, for the first time, a BODIPY-based fluorescent probe (1) with a rotatable meso-benzothiazole group was rationally designed and synthesized, showing both good viscosity-responsive and AIE properties. Probe 1 through direct linkage with the thiazole group, showed nearly no emission in low viscous solvents; however, a strong emission at 534 nm appeared and increased gradually with the increase in viscosity, attributing to the efficient restriction of the rotatable meso-benzothiazole group. The intensity (log I534) displayed a good linear relationship with viscosity (log η) in the viscous range of 0.59-945 cP in methanol/glycerol mixtures. Interestingly, 1 showed enhanced emission at 534 nm in 70% water compared to pure acetonitrile due to the aggregation-induced inhibited rotations. Cellular imaging suggested that 1 could successfully sense lysosomal viscosity changes induced by lipopolysaccharide, nystatin, low temperature, and dexamethasone in living cells, which could be further applied in autophagy monitoring by tracing viscosity changes. As a comparison, its analogue 2 directly linking with the phenyl group showed no viscosity-responsive or AIE properties. Therefore, for the first time, we reported a meso-benzothiazole-BODIPY-based fluorescent rotor with AIE and lysosomal viscosity-responsive properties in nervous cells, which was further applied in monitoring autophagy, and this work thus could provide an innovative strategy for the design of potential AIE and viscosity-responsive probes.


Subject(s)
Boron , Fluorescent Dyes , Methanol , Glycerol , Lipopolysaccharides , Nystatin , Lysosomes , Benzothiazoles , Acetonitriles , Solvents , Autophagy , Water , Dexamethasone
5.
PLoS One ; 17(6): e0259783, 2022.
Article in English | MEDLINE | ID: mdl-35687586

ABSTRACT

Automatically identifying the forage is the basis of intelligent fine breeding of cattle and sheep. In specific, it is a key step to study the relationship between the type and quantity of forage collected by cattle and sheep and their own growth, cashmere fineness, milk quality, meat quality and flavor, and so on. However, traditional method mainly rely on manual observation, which is time-consuming, laborious and inaccurate, and affects the normal grazing behavior of livestock. In this paper, the optimized Convolution Neural Network(CNN): edge autoencoder network(E-A-Net) algorithm is proposed to accurately identify the forage species, which provides the basis for ecological workers to carry out grassland evaluation, grassland management and precision feeding. We constructed the first forage grass dataset about Etuoke Banner. This dataset contains 3889 images in 22 categories. In the data preprocessing stage, the random cutout data enhancement is adopted to balance the original data, and the background is removed by employing threshold value-based image segmentation operation, in which the accuracy of herbage recognition in complex background is significantly improved. Moreover, in order to avoid the phenomenon of richer edge information disappearing in the process of multiple convolutions, a Sobel operator is utilized in this E-A-Net to extract the edge information of forage grasses. Information is integrated with the features extracted from the backbone network in multi-scale. Additionally, to avoid the localization of the whole information during the convolution process or alleviate the problem of the whole information disappearance, the pre-training autoencoder network is added to form a hard attention mechanism, which fuses the abstracted overall features of forage grasses with the features extracted from the backbone CNN. Compared with the basic CNN, E-A-Net alleviates the problem of edge information disappearing and overall feature disappearing with the deepening of network depth. Numerical simulations show that, compared with the benchmark VGG16, ResNet50 and EfficientNetB0, the f1 - score of the proposed method is improved by 1.6%, 2.8% and 3.7% respectively.


Subject(s)
Plant Breeding , Poaceae , Animals , Cattle , Image Processing, Computer-Assisted , Livestock , Neural Networks, Computer , Seasons , Sheep
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 279: 121490, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35691168

ABSTRACT

Hypochlorous acid/hypochlorite (HOCl/ClO-) plays important roles in killing bacterial and causing damage to living tissues, and its abnormal levels could lead to many diseases. Although great efforts have been devoted, fluorescent probes for HOCl/ClO- with near-infrared fluorescence, good selectivity/sensitivity, and low background are still important and urgent. In this work, a novel double-bond-linked TCF-aza-BODIPY-based near-infrared fluorescent probe (3) was rationally designed, successfully prepared, and applied for sensing HOCl/ClO- in both solutions and living RAW264.7 cells, showing good selectivity and fluorescence "turn-on" phenomenon at 670 nm with low background. The limit of detection towards ClO- was determined to be 0.36 µM through the linear fluorescence changes at 670 nm in a broad ClO--concentration range of 0-150 µM. Furthermore, the sensing mechanism was investigated by mass spectrometry and compared with 1, suggesting that the remarkable spectroscopic changes could be ascribed to the oxidization of the double bond to the aldehyde group, accompanied with the leaving of the TCF group. Confocal imaging experiments also confirmed the remarkable intracellular fluorescence enhancements through incubation of ClO- and phorbol ester 12-myristate 13-acetate (PMA) in RAW264.7 cells. Therefore, for the first time, we reported a near-infrared TCF-aza-BODIPY-based fluorescent probe for highly sensitive and fluorescence "turn-on" detection of both exogenous and endogenous HOCl in living RAW264.7 cells through the quick oxidation of a conjugated double bond.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Hypochlorous Acid/analysis , Microscopy, Fluorescence/methods
7.
PLoS One ; 17(6): e0269259, 2022.
Article in English | MEDLINE | ID: mdl-35657811

ABSTRACT

Automatic estimation of the poses of dairy cows over a long period can provide relevant information regarding their status and well-being in precision farming. Due to appearance similarity, cow pose estimation is challenging. To monitor the health of dairy cows in actual farm environments, a multicow pose estimation algorithm was proposed in this study. First, a monitoring system was established at a dairy cow breeding site, and 175 surveillance videos of 10 different cows were used as raw data to construct object detection and pose estimation data sets. To achieve the detection of multiple cows, the You Only Look Once (YOLO)v4 model based on CSPDarkNet53 was built and fine-tuned to output the bounding box for further pose estimation. On the test set of 400 images including single and multiple cows throughout the whole day, the average precision (AP) reached 94.58%. Second, the keypoint heatmaps and part affinity field (PAF) were extracted to match the keypoints of the same cow based on the real-time multiperson 2D pose detection model. To verify the performance of the algorithm, 200 single-object images and 200 dual-object images with occlusions were tested under different light conditions. The test results showed that the AP of leg keypoints was the highest, reaching 91.6%, regardless of day or night and single cows or double cows. This was followed by the AP values of the back, neck and head, sequentially. The AP of single cow pose estimation was 85% during the day and 78.1% at night, compared to double cows with occlusion, for which the values were 74.3% and 71.6%, respectively. The keypoint detection rate decreased when the occlusion was severe. However, in actual cow breeding sites, cows are seldom strongly occluded. Finally, a pose classification network was built to estimate the three typical poses (standing, walking and lying) of cows based on the extracted cow skeleton in the bounding box, achieving precision of 91.67%, 92.97% and 99.23%, respectively. The results showed that the algorithm proposed in this study exhibited a relatively high detection rate. Therefore, the proposed method can provide a theoretical reference for animal pose estimation in large-scale precision livestock farming.


Subject(s)
Algorithms , Milk , Animals , Cattle , Dairying/methods , Farms , Female , Lactation
8.
Chem Commun (Camb) ; 58(12): 1930-1933, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35040863

ABSTRACT

Two novel meso-CF3 BODIPY-based fluorescent rotors have been rationally prepared and found to sensitively respond to viscosity in living cells with a fluorescence "turn-on" effect, attributed to the special restricted rotation of meso-CF3 group in viscous environments. Interestingly, a monostyryl probe with one cationic group exhibits good mitochondrial localization and AIE property.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Mitochondria/metabolism , Viscosity , Cations , HeLa Cells , Humans , Molecular Structure , Spectrometry, Fluorescence
9.
Eur J Med Chem ; 226: 113828, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34536670

ABSTRACT

Hydrogen peroxide (H2O2) plays vital roles in oxidative stress and signal transduction in living organisms, and its abnormal levels could be linked to many diseases. Despite numerous efforts spent, it is still urgent and of high importance to develop better H2O2 probes with good selectivity, high sensitivity and low backgrounds. To this end, a novel boron dipyrromethene (BODIPY)-based fluorescent probe with an electron-withdrawing methylenemalononitrile at the meso position has been rationally designed, successfully synthesized and investigated for detection of H2O2 in aqueous solutions and living cells, which exhibited high selectivity and sensitivity, fluorescent "turn-on" phenomenon at 540 nm, and ratiometric changes from 506 to 540 nm. Upon exposure to H2O2, a strong fluorescent emission at 540 nm appeared and the corresponding quantum yields changed from 0.009 to 0.13. The detection limit towards H2O2 was calculated to be 31 nM by the linear fluorescence change at 540 nm in the H2O2-concentration ranging from 2 to 10 µM. This probe was applicable in a pH range from 6 to 10. Meanwhile, the sensing mechanism was also confirmed by the 1H NMR and mass spectrometry, suggesting that the above changes might be ascribed to the quick addition and oxidization of the double bond. Furthermore, confocal imaging results also showed great enhancement of intracellular fluorescence upon exposure to H2O2 and PMA in RAW264.7 cells, unambiguously confirming its great potentials as a fluorescent probe for highly sensitive detection of both exogenous and endogenous H2O2 in living cells.


Subject(s)
Boron Compounds/chemistry , Fluorescent Dyes/chemistry , Hydrogen Peroxide/analysis , Nitriles/chemistry , Optical Imaging , Animals , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , HEK293 Cells , Humans , Mice , Molecular Structure , RAW 264.7 Cells , Structure-Activity Relationship
10.
Talanta ; 233: 122581, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34215073

ABSTRACT

A novel near-infrared-emitting aza-BODIPY-based fluorescent probe with two tellurium atoms at two upper benzyl rings has been prepared and explored for its fluorescent sensing properties towards hypochlorous acid/hypochorite (HClO/ClO-), which showed high selectivity and absolutely fluorescent "turn-on" phenomenon at 738 nm. The fluorescence of this probe was sufficiently quenched due to photoindued electron transfer by two tellurium atoms. Upon exposure to HClO/ClO-, a strong near-infrared emission at 738 nm appeared with fluorescence quantum yields changing from 0 to 0.11. This remarkable fluorescence change was ascribed to the oxidation of both electron-rich tellurium atoms. The detection limit of this probe towards HClO/ClO- was calculated to 0.09 µM in acetonitrile aqueous solution by the linear fluorescence change at 738 nm in the HClO/ClO--concentration range of 0-30 µM. Interestingly, this probe was found to be applicable in a broad pH range (2-10). Meanwhile, the oxidized probe could be further responsive to biothiols with substantial fluorescence disappearance. The bioimaging experiments in RAW264.7 cells showed the appearance of intracellular near-infrared fluorescence after addition of HClO/ClO- and PMA, and the fluorescence could also be reversed to be silenced by further introduction of GSH, confirming its potential application for exogenous and endogenous detection of HClO/ClO- in living cells.


Subject(s)
Fluorescent Dyes , Hypochlorous Acid , Boron Compounds , Microscopy, Fluorescence
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119207, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-33248887

ABSTRACT

A new near-infrared (NIR)-emitting aza-boron-dipyrromethene dye with two electron-donating amino groups at 1- and 7-positions has been prepared via several steps of reactions. This probe showed a NIR absorption at 748 nm with an obvious shoulder peak at 634 nm in CH3CN/H2O. Interestingly, a NIR fluorescence emission at 843 nm was observed with a large Stokes shift of 95 nm. This novel NIR-emitting aza-boron-dipyrromethene dye was further investigated as a Hg2+-sensing fluorescent probe, which selectively bound to Hg2+, showing a blue-shifted and sharp absorption band at 695 nm with the disappearance of the shoulder peak at 634 nm. Correspondingly, the color change could be easily seen from blue to green. Interestingly, the emission exhibited an absolutely "turn-on" peak at 725 nm with a significant blue shift by 118 nm (from 843 to 725 nm), due to the efficient inhibition of the intramolecular-charge-transfer process arising from two amino groups. This probe was finally introduced to Hela cells, showing a "OFF-ON" NIR emission upon exposure to Hg2+. The overall results confirmed that this novel NIR-emitting aza-boron-dipyrromethene fluorescent probe with a large Stokes shift could serve as a colorimetric and fluorescent "turn-on" sensor for Hg2+ in both solutions and living cells.


Subject(s)
Fluorescent Dyes , Mercury , Boron , Boron Compounds , HeLa Cells , Humans , Porphobilinogen/analogs & derivatives
12.
Materials (Basel) ; 13(14)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698442

ABSTRACT

Cement-based materials are non-uniform porous materials that are easily permeated by harmful substances, thereby deteriorating their structural durability. In this work, three ionic paraffin emulsions (IPEs) (i.e., anionic paraffin emulsion (APE), cationic paraffin emulsion (CPE), and non-ionic paraffin emulsion (NPE), respectively) were prepared. The effects of incorporation of IPEs into cement-based materials on hydrophobicity improvement were investigated by environmental scanning electron microscopy (ESEM), Fourier transform infrared (FTIR) spectroscopy, transmission and reflection polarizing microscope (TRPM) tests and correlation analyses, as well as by compressive strength, impermeability, and apparent contact angle tests. Finally, the optimal type and the recommended dose of IPEs were suggested. Results reveal that the impermeability pressure and apparent contact angle value of cement-based materials incorporated with IPEs are significantly higher than those of the control group. Thus, the hydrophobicity of cement-based materials is significantly improved. However, IPEs adversely affect the compressive strength of cement-based materials. The apparent contact angle mainly affects impermeability. These three IPEs impart hydrophobicity to cement-based materials. In addition, the optimal NPE dose can significantly improve the hydrophobicity of cement-based materials.

13.
Anal Chem ; 91(23): 15255-15259, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31665602

ABSTRACT

A novel artificial receptor, heptakis-[6-deoxy-6-(2-hydroxy-3-trimethylammonion-propyl) amino]-beta-cyclomaltoheptaose, with similar functions of mitochondrial ADP/ATP carrier protein, was synthesized and harbored in the engineered α-HL (M113R)7 nanopore, forming a single-molecule biosensor for sensing bioenergetic molecules and their transformations. The strategy significantly elevates both selectivity and signal-to-noise, which enables simultaneous recognition and detection of ATP, ADP, and AMP by real-time single-molecule measurement.


Subject(s)
Adenosine Diphosphate/analysis , Adenosine Monophosphate/analysis , Adenosine Triphosphate/analysis , Biomimetic Materials/chemistry , Nanopores , beta-Cyclodextrins/chemistry , Biomimetic Materials/chemical synthesis , Biosensing Techniques , Hemolysin Proteins/chemical synthesis , Hemolysin Proteins/chemistry , Protein Engineering , beta-Cyclodextrins/chemical synthesis
14.
Talanta ; 167: 526-531, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28340755

ABSTRACT

The determination of glutathione reduced (GSH) or oxidized (GSSG) in bulk solution has been reported previously. However, it is critically important to set up a simple and label-free method to recognize GSSG and GSH selectively and dynamically, especially at a single-molecule level. Here we report a novel nanopore method to recognize GSSG based on a newly synthesized per-6-quaternary ammonium-ß-cyclodextrin (p-QABCD), which is used as both the molecular adaptor of protein nanopore and the recognizing element of GSSG. Distinct current signature is observed upon GSSG binding in a mutant protein nanopore (M113R RL2)7 equipped with p-QABCD, while there is no signal for GSH. Thus GSSG in the mixture can be selectively detected in the concentration range of 6.00-90.0µM. Furthermore, the conversion between GSH and GSSG both in bulk solution and in nanochannel can be continuously monitored in real time and in situ. The label-free method provides a possibility to investigate enzymatic activity as well as its activators or inhibitors related to the transformation between GSH and GSSG.


Subject(s)
Glutathione Disulfide/analysis , Glutathione/analysis , Nanopores , Quaternary Ammonium Compounds/chemistry , beta-Cyclodextrins/chemistry , Glutathione/chemistry , Glutathione Disulfide/chemistry , Oxidation-Reduction
15.
Analyst ; 142(7): 1048-1053, 2017 Mar 27.
Article in English | MEDLINE | ID: mdl-28280809

ABSTRACT

Chiral recognition at single-molecule level for small active molecules is important, as exhibited by many nanostructures and molecular assemblies in biological systems, but it presents a significant challenge. We report a simple and rapid sensing strategy to discriminate all enantiomers of natural aromatic amino acids (AAA) using a metal-organic complex-functionalized protein nanopore, in which a chiral recognition element and a chiral recognition valve were equipped. A trifunctional molecule, heptakis-(6-deoxy-6-amino)-ß-cyclodextrin (am7ßCD), was non-covalently lodged within the nanopore of an α-hemolysin (αHL) mutant, (M113R)7-αHL. Copper(ii) ion reversibly bonds to the amino group of am7ßCD to form an am7ßCD-CuII complex, which allowed chiral recognition for each enantiomer in the mixture of AAA by distinct current signals. The CuII plugging valve plays a crucial rule that holds chiral molecules in the nanocavity for a sufficient registering time. Importantly, six enantiomers of all nature AAA could be simultaneously recognized at one time. Enantiomeric excess (ee) could also be accurately detected by this approach. It should be possible to generalize this approach for sensing of other chiral molecules.

16.
Chem Commun (Camb) ; 50(89): 13853-6, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25260160

ABSTRACT

Nanopore analysis has emerged as the simplest single-molecule technique. We combined DNA probes with a nanopore electrochemical sensor for the rapid and sensitive detection of pathogenic DNA. The novel nanopore biosensor allows the single-base discrimination and detection of picomolar DNA in serum samples.


Subject(s)
Biosensing Techniques , DNA, Viral/blood , Hepatitis B virus/genetics , Nanopores , Bacterial Toxins/chemistry , Hemolysin Proteins/chemistry , Humans
17.
Opt Lett ; 39(9): 2652-5, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24784069

ABSTRACT

A system for generating radio frequency signals with orbital angular momentum (OAM) is proposed and certificated for the first time, which employs an array of multiple optical-true-time-delay elements and circular antennas array (CAAs). A constructive Fourier series theory about CAAs collectively forming an OAM radio beam is demonstrated. An optical spectrum processor offers the four lines high-resolution time delay by adding a series of linear optical phase shifts. The OAM radio beam with topological charge L=1 is produced and measured successfully.

18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 32(1): 223-8, 2012 Jan.
Article in Chinese | MEDLINE | ID: mdl-22497164

ABSTRACT

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has become a very efficient and sensitive trace, ultratrace, and surface analytical technique for the in situ study of the concentration and distribution of the elements in life sciences with high spatial resolution. It is being used more and more frequently in biological, medical materials and protein research, which will lead to a better understanding of physiology and pathology process in cells and tissues. The present review mainly introduces the strategies of combination of gel electrophoresis (GE) with LA-ICP-MS for the quantification of trace elements in proteins, including the proteins separation, elements detection and calibration methods. The paper emphasizes the basic conditions of the proteins separation, focusing on the stability of proteins during GE and the treatment methods of staining and drying of the gel to enable successful detection of the elements by LA-ICP-MS. In addition, the application of GE-LA-ICP-MS in phosphoproteins, selenoproteins and metal-binding proteins is introduced in detail. The prospects and challenge for this technique are discussed as well for further study.


Subject(s)
Electrophoresis , Mass Spectrometry , Proteins/chemistry , Trace Elements/chemistry , Calibration
19.
J Photochem Photobiol B ; 110: 28-33, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22424954

ABSTRACT

The soyabean isoflavones genistein (GEN) and daidzein (DA) are popular presented in diet. Isoflavones have a variety of biological activities including antioxidant and anticancer properties. On account of its antioxidant activity, isoflavones might protect cancer cells from free radical damage in photodynamic (PDT) during which reactive oxygen species (ROS) production was stimulated leading to irreversible tumor cell injury. In this study, the influence of GEN and DA on K562 cells in 5-aminolevulinic acid (ALA)-based PDT was demonstrated. The results showed that GEN inhibited cell proliferation and enhance cell apoptosis, lipid peroxidation, and DNA damage in ALA-PDT on K562 cells. However, DA did not enhance cell apoptosis, lipid peroxidation, and DNA damage in ALA-PDT. In conclusion, the results suggested that soy consumption during PDT did not decrease the effectiveness of cancer therapy on malignant cells.


Subject(s)
Aminolevulinic Acid/therapeutic use , Genistein/pharmacology , Isoflavones/pharmacology , K562 Cells/drug effects , Photochemotherapy , Antioxidants/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , DNA Damage/drug effects , Diet , Humans , Lipid Peroxidation/drug effects , Photosensitizing Agents/pharmacology
20.
Acta Biochim Biophys Sin (Shanghai) ; 41(12): 1033-43, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20011978

ABSTRACT

Mangostin (MAG), a kind of xanthone widely used in diet and medicine, has antioxidant, anti-inflammatory, antimicrobial, and anticancer activities. On account of its antioxidant activity, MAG might protect cancer cells from free radical damage in photodynamic therapy (PDT) during which reactive oxygen species production was stimulated leading to irreversible tumor cell injury. In this study, the antioxidant activity of MAG was investigated and the influence of MAG on K562 cells in 5-aminolevulinic acid (ALA)-based PDT is demonstrated. The results showed that MAG could scavenge hydroxyl radical, superoxide anion, and hydrogen peroxide and inhibit the formation of malondialdehyde (MDA), but increase the amounts of singlet oxygen in cell-free systems. MAG inhibits cell proliferation and enhances cell apoptosis, lipid peroxidation, and DNA damage in ALA-PDT on K562 cells. NaN3, a singlet oxygen quencher, suppresses the MAG-induced cell apoptosis, lipid peroxidation, and DNA damage. In conclusion, MAG enhances the PDT-induced cytotoxicity in K562 cells and singlet oxygen was involved in this process. These results implied that the effect of antioxidants on PDT might be determined by its sensitization ability to singlet oxygen.


Subject(s)
Antioxidants/pharmacology , Leukemia/drug therapy , Leukemia/pathology , Photochemotherapy , Xanthones/pharmacology , Apoptosis/drug effects , Cell-Free System , DNA Damage , Humans , K562 Cells , Leukemia/metabolism , Lipid Peroxidation/drug effects , Lipid Peroxidation/physiology , Reactive Oxygen Species/metabolism , Sodium Azide/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...