Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 63(26): 12342-12349, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38904258

ABSTRACT

As a typical RNA virus, the genetic information on HIV-1 is entirely stored in RNA. The reverse transcription activity of HIV-1 reverse transcriptase (RT) plays a crucial role in the replication and transmission of the virus. Non-nucleoside RT inhibitors (NNRTIs) block the function of RT by binding to the RNA binding site on RT, with very few targeting viral RNA. In this study, by transforming planar conjugated ligands into a spiro structure, we convert classical Ru(II) DNA intercalators into a nonintercalator. This enables selective binding to HIV-1 transactivation response (TAR) RNA on the outer side of nucleic acids through dual interactions involving hydrogen bonds and electrostatic attraction, effectively inhibiting HIV-1 RT and serving as a selective fluorescence probe for TAR RNA.


Subject(s)
HIV Reverse Transcriptase , HIV-1 , Reverse Transcriptase Inhibitors , Ruthenium , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/metabolism , Ligands , HIV-1/enzymology , HIV-1/drug effects , Ruthenium/chemistry , Ruthenium/pharmacology , RNA, Viral/metabolism , RNA, Viral/chemistry , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Spiro Compounds/metabolism , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Coordination Complexes/chemical synthesis , Intercalating Agents/chemistry , Intercalating Agents/pharmacology , Molecular Structure , Humans , Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , HIV Long Terminal Repeat , Binding Sites
2.
Mol Plant Microbe Interact ; 33(7): 996-1006, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32196398

ABSTRACT

Tobacco mosaic virus (TMV) infection can causes serious damage to tobacco crops. To explore the approach of preventing TMV infection of plants, two tobacco cultivars with different resistances to TMV were used to analyze transcription profiling before and after TMV infection. The involvement of biological pathways differed between the tolerant variety (Yuyan8) and the susceptible variety (NC89). In particular, the plant-virus interaction pathway was rapidly activated in Yuyan8, and specific resistance genes were enriched. Liquid chromatography tandem mass spectrometry analysis detected large quantities of antiviral substances in the tolerant Yuyan8. A novel Nicotiana tabacum leucine-rich repeat receptor kinase (NtLRR-RLK) gene was identified as being methylated and this was verified using bisulfite sequencing. Transient expression of TMV-green fluorescent protein in pRNAi-NtLRR-RLK transgenic plants confirmed that NtLRR-RLK was important for susceptibility to TMV. The specific protein interaction map generated from our study revealed that levels of BIP1, E3 ubiquitin ligase, and LRR-RLK were significantly elevated, and all were represented at node positions in the protein interaction map. The same expression tendency of these proteins was also found in pRNAi-NtLRR-RLK transgenic plants at 24 h after TMV inoculation. These data suggested that specific genes in the infection process can activate the immune signal cascade through different resistance genes, and the integration of signal pathways could produce resistance to the virus. These results contribute to the overall understanding of the molecular basis of plant resistance to TMV and in the long term could identify new strategies for prevention and control virus infection.


Subject(s)
Disease Resistance/genetics , Nicotiana/genetics , Plant Diseases/genetics , Plant Proteins/genetics , Protein Serine-Threonine Kinases/genetics , Tobacco Mosaic Virus/pathogenicity , Carrier Proteins , Plant Diseases/microbiology , Plant Immunity , Plants, Genetically Modified/microbiology , Signal Transduction , Nicotiana/microbiology
3.
Front Plant Sci ; 8: 2263, 2017.
Article in English | MEDLINE | ID: mdl-29379516

ABSTRACT

Topping damage can induce the nicotine synthesis in tobacco roots, which involves the activation of JA and auxin signal transduction. It remains unclear how these hormone signals are integrated to regulate nicotine synthesis. Here we isolated a transcription factor NtWRKY-R1 from the group IIe of WRKY family and it had strong negative correlation with the expression of putrescine N-methyltransferase, the key enzyme of nicotine synthesis pathway. NtWRKY-R1 was specifically and highly expressed in tobacco roots, and it contains two transcriptional activity domains in the N- and C-terminal. The promoter region of NtWRKY-R1 contains two cis-elements which are responding to JA and auxin signals, respectively. Deletion of NtWRKY-R1 promoter showed that JA and auxin signals were subdued by NtWRKY-R1, and the expression of NtWRKY-R1 was more sensitive to auxin than JA. Furthermore, Yeast two-hybrid experiment demonstrated that NtWRKY-R1 can interact with the actin-binding protein. Our data showed that the intensity of JA and auxin signals can be translated into the expression of NtWRKY-R1, which regulates the balance of actin polymerization and depolymerization through binding actin-binding protein, and then regulates the expression of genes related to nicotine synthesis. The results will help us better understand the function of the WRKY-IIe family in the signaling crosstalk of JA and auxin under damage stress.

4.
J Inorg Biochem ; 102(5-6): 1050-9, 2008.
Article in English | MEDLINE | ID: mdl-18295337

ABSTRACT

A DNA-intercalating Ru(II) polypyridyl complex [Ru(bpy)2(appo)]2+ (bpy=2,2'-bipyridine, appo=11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one) has been synthesized and characterized by elemental analysis, electrospray mass spectra, (1)H NMR, UV/Vis spectrum, fluorescent spectrum and electrochemistry. The DNA-binding, photocleavage, and topoisomerase inhibition of the complex was studied. Interestingly, the complex binds to DNA via an intercalative mode with preference for GC sequences and cleaves the pBR322 DNA upon irradiation. In addition, the complex shows high inhibition activity against topoisomerase II by interfere the DNA religation.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Intercalating Agents/chemical synthesis , Intercalating Agents/pharmacology , Organometallic Compounds/chemical synthesis , Organometallic Compounds/pharmacology , Topoisomerase II Inhibitors , DNA/radiation effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Hot Temperature , Intercalating Agents/chemistry , Luminescent Measurements , Nucleic Acid Denaturation , Organometallic Compounds/chemistry , Photochemistry , Spectrophotometry, Ultraviolet , Thermodynamics
5.
J Biol Inorg Chem ; 12(7): 1015-27, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17659367

ABSTRACT

Many antitumor drugs act as topoisomerase inhibitors, and the inhibitions are usually related to DNA binding. Here we designed and synthesized DNA-intercalating Ru(II) polypyridyl complexes Delta--[Ru(bpy)(2)(uip)](2+) and Lambda-[Ru(bpy)(2)(uip)](2+) (bpy is 2,2'-bipyridyl, uip is 2-(5-uracil)-1H-imidazo[4,5-f][1,10]phenanthroline). The DNA binding, photocleavage, topoisomerase inhibition, and cytotoxicity of the complexes were studied. As we expected, the synthesized Ru(II) complexes can intercalate into DNA base pairs and cleave the pBR322 DNA with high activity upon irradiation. The mechanism studies reveal that singlet oxygen ((1)O(2)) and superoxide anion radical (O (2) (*-) ) may play an important role in the photocleavage. The inhibition of topoisomerases I and II by the Ru(II) complexes has been studied. The results suggest that both complexes are efficient inhibitors towards topoisomerase II by interference with the DNA religation and direct topoisomerase II binding. Both complexes show antitumor activity towards HELA, hepG2, BEL-7402, and CNE-1 tumor cells.


Subject(s)
DNA/chemistry , Intercalating Agents/chemistry , Intercalating Agents/chemical synthesis , Pyridines/chemistry , Ruthenium/chemistry , Topoisomerase II Inhibitors , Cell Line, Tumor , Circular Dichroism , DNA/metabolism , Humans , Inhibitory Concentration 50 , Intercalating Agents/pharmacology , Stereoisomerism , Thermodynamics
6.
Talanta ; 71(5): 1944-50, 2007 Mar 30.
Article in English | MEDLINE | ID: mdl-19071546

ABSTRACT

A microfabricated thin glass chip for contactless conductivity detection in chip capillary electrophoresis is presented in this contribution. Injection and separation channels were photolithographed and chemically etched on the surface of substrate glass, which was bonded with a thin cover glass (100microm) to construct a new microchip. The chip was placed over an independent contactless electrode plate. Owing to the thinness between channel and electrodes, comparatively low excitation voltage (20-110V in V(p-p)) and frequency (40-65kHz) were suitable, and favorable signal could be obtained. This microchip capillary electrophoresis device was used in separation and detection of inorganic ions, amino acids and alkaloids in amoorcorn tree bark and golden thread in different buffer solutions. The detection limit of potassium ion was down to 10micromol/L. The advantages of this microchip system exist in the relative independence between the microchip and the detection electrodes. It is convenient to the replacement of chip and other operations. Detection in different position of the channel would also be available.

SELECTION OF CITATIONS
SEARCH DETAIL
...