Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 169352, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38110102

ABSTRACT

Silicon dioxide nanoparticles (SiNPs) are one of the major forms of silicon dioxide and are composed of the most-abundant compounds on earth. Based on their excellent properties, SiNPs are widely used in food production, synthetic processes, medical diagnostics, drug delivery, and other fields. The mass production and wide application of SiNPs increases the risk of human exposure to SiNPs. In the workplace and environment, SiNPs mainly enter the human body through the respiratory tract and reach the lungs; therefore, the lungs are the most important and most toxicologically affected target organ of SiNPs. An increasing number of studies have shown that SiNP exposure can cause severe lung toxicity. However, studies on the toxicity of SiNPs in ex vivo and in vivo settings are still in the exploratory phase. The molecular mechanisms underlying the lung toxicity of SiNPs are varied and not yet fully understood. As a result, this review summarizes the possible mechanisms of SiNP-induced lung toxicity, such as oxidative stress, endoplasmic reticulum stress, mitochondrial damage, and cell death. Moreover, this study provides a summary of the progression of diseases caused by SiNPs, thereby establishing a theoretical basis for future studies on the mechanisms of SiNP-induced lung toxicity.


Subject(s)
Lung Diseases , Nanoparticles , Humans , Silicon Dioxide/toxicity , Nanoparticles/toxicity , Oxidative Stress , Lung , Lung Diseases/chemically induced
2.
Biomed Pharmacother ; 151: 113173, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35623165

ABSTRACT

Exposure to crystalline silica (CS) results in a persistent pulmonary inflammatory response, which results in abnormal tissue repair and excessive matrix deposition. Due to vague pathogenesis, there is virtually no practical therapeutic approach. Here we showed the pharmacological effects of TUDCA on CS-induced pulmonary inflammation and fibrosis. It also helped a faster recovery of CS-impaired pulmonary function. Mechanistically, TUDCA suppressed interferon (IFN)-γ and interleukin (IL)-17A productions by pulmonary helper T (Th) cells. We demonstrated that CS-boosted cytokine-producing Th cells were effector memory (TEM) phenotype. TUDCA decreased the pathogenic TEM cells expansion in the lung. Using in vivo labeling method, we discovered the TEM cells were lung tissue residency with CD103 expression. TUDCA's anti-fibrotic effects were linked to decreasing IFN-γ producing CD103- TEM-like and IL-17A producing CD103+ TRM-like T cells as well as restricting TRM-like Treg cells in the lung. Specifically, TUDCA could restrain CD103+ TRM-like Treg cell proliferation but not limit the CD103- ones. Further characterization study proved that though the Tregs originally came from the thymus, the expressing levels of ST-2 were different, which provides insights into TUDCA's various effects on cell proliferation. Collectively, our data paved the way to understanding the pathogenesis of silicosis and may provide new treatments for this pulmonary fibrotic disease.


Subject(s)
Memory T Cells , Silicosis , CD8-Positive T-Lymphocytes/metabolism , Fibrosis , Humans , Immunologic Memory , Lung/pathology , Silicon Dioxide , Silicosis/metabolism , Taurochenodeoxycholic Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...