Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 34(2): 105-20, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17115250

ABSTRACT

Three members of Brassica napus TRANSPARENT TESTA 2 (BnTT2) gene family encoding potential R2R3-MYB regulatory proteins of proanthocyanidin biosynthesis were isolated. BnTT2-1, BnTT2-2, and BnTT2-3 are 1102 bp with two introns, and have a 938-bp full-length cDNA with a 260 amino acid open reading frame. They share 98.2-99.3% nucleotide and 96.5-98.5% amino acid identities to each other, and are orthologous to Arabidopsis thaliana TT2 (AtTT2) with 74.1-74.8% nucleotide and 71.1-71.8% amino acid identities. An mRNA type of BnTT2-2 was found to contain unspliced intron 2 and encode a premature protein. They all have an alternative polyadenylation site. BnTT2-1 and BnTT2-3 also have an alternative transcription initiation site. Aligned with AtTT2, their 5' untranslated regions (UTRs) are astonishingly conserved, and two conserved regions were also found in their 3' UTRs. Oligonucleotide deletion leads to double-start codons of them. Resembling AtTT2, BnTT2 proteins are nuclear-located R2R3-MYB proteins containing predicted DNA-binding sites, bHLH interaction residues, and transcription activation domains. Southern blot indicated that there might be three BnTT2 members in B. napus, lower than triplication-based prediction. Semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that the expression of BnTT2-2 is mostly like AtTT2 with intensive expression in young seeds, but it is also expressed in root in which AtTT2 has no expression. BnTT2-1 shows lower tissue specificity and transcription levels, whereas BnTT2-3 is the lowest. Comparative cloning and RT-PCR indicated that seed color near-isogenic lines L1 and L2 have equivalent BnTT2 genes, and the yellow seed color in L2 might be caused by locus/loci other than BnTT2. Our results lay the basis for further investigating the regulatory mechanism of BnTT2 genes in flavonoid pathway and for transgenic creation of novel yellow-seeded B. napus stocks.


Subject(s)
Brassica napus/genetics , Multigene Family , Plant Proteins/genetics , Proto-Oncogene Proteins c-myb/genetics , Amino Acid Sequence , Base Sequence , Brassica napus/metabolism , Cloning, Molecular , Genome, Plant , Molecular Sequence Data , Phylogeny , Plant Proteins/classification , Plant Proteins/metabolism , Proanthocyanidins/biosynthesis , Proto-Oncogene Proteins c-myb/classification , Proto-Oncogene Proteins c-myb/metabolism , Sequence Alignment , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...