Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Adv Mater ; 34(50): e2206812, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36269022

ABSTRACT

Organic molecules have been considered promising energy-storage materials in aqueous zinc-ion batteries (ZIBs), but are plagued by poor conductivity and structural instability because of the short-range conjugated structure and low molecular weight. Herein, an imine-based tris(aza)pentacene (TAP) with extended conjugated effects along the CN backbones is proposed, which is in situ injected into layered MXene to form a TAP/Ti3 C2 Tx cathode. Theoretical and electrochemical analyses reveal a selective H+ /Zn2+ co-insertion/extraction mechanism in TAP, which is ascribed to the steric effect on the availability of active CN sites. Moreover, Ti3 C2 Tx , as a conductive scaffold, favors fast Zn2+ diffusion to boost the electrode kinetics of TAP. Close electronic interactions between TAP and Ti3 C2 Tx preserve the structural integrity of TAP/Ti3 C2 Tx during the repeated charge/discharge. Accordingly, the TAP/Ti3 C2 Tx cathode delivers a high reversible capacity of 303 mAh g-1 at 0.04 A g-1 in aqueous ZIBs, which also realizes an ultralong lifetime over 10 000 cycles with a capacity retention of 81.6%. Furthermore, flexible Zn||TAP/Ti3 C2 Tx batteries with a quasi-solid-state electrolyte demonstrate potential application in wearable electronic devices. This work offers pivotal guidance to create highly stable organic electrodes for advanced ZIBs.

2.
ACS Appl Mater Interfaces ; 14(3): 3825-3837, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35025195

ABSTRACT

Inspired by nature, innovative devices have been made to imitate the morphology and functions of natural red blood cells (RBCs). Here, we report a red blood cell-mimetic micromotor (RBCM), which was fabricated based on a layer-by-layer assembly method and precisely controlled by an external rotating uniform magnetic field. The main framework of the RBCM was constructed by the natural protein zein and finally camouflaged with the RBC membrane. Functional cargos such as Fe3O4 nanoparticles and the chemotherapeutic agent doxorubicin were loaded within the wall part of the RBCM for tumor therapy. Due to the massive loading of Fe3O4 nanoparticles, the RBCM can be precisely navigated by an external rotating uniform magnetic field and be used as a magnetic resonance imaging contrast agent for tumor imaging. The RBCM has been proven to be biocompatible, biodegradable, magnetically manipulated, and imageable, which are key requisites to take micromotors from the chalkboard to clinics. We expect the RBC-inspired biohybrid device to achieve wide potential applications.


Subject(s)
Antibiotics, Antineoplastic/pharmacology , Biocompatible Materials/chemistry , Doxorubicin/pharmacology , Drug Delivery Systems , Erythrocytes/chemistry , Magnetic Iron Oxide Nanoparticles/chemistry , Animals , Antibiotics, Antineoplastic/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Cells, Cultured , Doxorubicin/chemistry , Drug Screening Assays, Antitumor , Humans , Magnetic Fields , Materials Testing , Mice
3.
Chem Commun (Camb) ; 53(80): 11052-11055, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28944788

ABSTRACT

We report a simple strategy for the growth of ultra-thin magnetite nanoplates. The injection of a large portion of precursor after stunted nucleation is favorable for both the survival of metastable structures in seeds and their subsequent development into anisotropic nanoparticles. The as-synthesized ultrathin triangular magnetite nanoplates are expected to have important applications as T1 contrast agents for magnetic resonance imaging.

4.
Nano Lett ; 16(12): 7357-7363, 2016 12 14.
Article in English | MEDLINE | ID: mdl-27960523

ABSTRACT

Although a range of nanoparticles have been developed as drug delivery systems in cancer therapeutics, this approach faces several important challenges concerning nanocarrier circulation, clearance, and penetration. The impact of reducing nanoparticle size on penetration through leaky blood vessels around tumor microenvironments via enhanced permeability and retention (EPR) effect has been extensively examined. Recent research has also investigated the effect of nanoparticle shape on circulation and target binding affinity. However, how nanoparticle shape affects drug release and therapeutic efficacy has not been previously explored. Here, we compared the drug release and efficacy of iron oxide nanoparticles possessing either a cage shape (IO-NCage) or a solid spherical shape (IO-NSP). Riluzole cytotoxicity against metastatic cancer cells was enhanced 3-fold with IO-NCage. The shape of nanoparticles (or nanocages) affected the drug release point and cellular internalization, which in turn influenced drug efficacy. Our study provides evidence that the shape of iron oxide nanoparticles has a significant impact on drug release and efficacy.


Subject(s)
Dextrans , Drug Carriers , Ferric Compounds , Nanoparticles , Antineoplastic Agents/administration & dosage , Cell Line, Tumor , Humans , Riluzole/administration & dosage
5.
Langmuir ; 32(10): 2500-8, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26925511

ABSTRACT

Electroreduction of diazonium salts is a widely used technique for grafting organic films on various surfaces. In this paper, scanning electrochemical microscopy (SECM) was used for high-resolution characterization of a thiolated aryl multilayer film obtained by electrografting of thiophenol diazonium on highly ordered pyrolytic graphite (HOPG). The blocking properties of the film were evaluated, and the origins of incomplete surface passivation were elucidated by comparing current-distance curves and surface reactivity maps obtained with nanometer- and micrometer-sized tips. In this way, one can distinguish between different pathways of charge transport in the film, e.g., pinhole defects versus rate-limiting charge transfer through the film. Pd nanocubes were anchored to the film by thiol groups and imaged by SECM. The applicability of SECM to in situ visualization of the geometry of non-spherical nanoparticles has been demonstrated.


Subject(s)
Diazonium Compounds/chemistry , Graphite/chemistry , Nanoparticles/chemistry , Sulfhydryl Compounds/chemistry , Hydrogen/chemistry , Microscopy, Electrochemical, Scanning , Oxidation-Reduction , Palladium/chemistry , Permeability
6.
ChemNanoMat ; 2(5): 419-422, 2016 May.
Article in English | MEDLINE | ID: mdl-31632896

ABSTRACT

Enzymes are some of the most efficient catalysts in nature. If small catalytic peptides mimic enzymes, there is potential for broad applications from catalysis for new material synthesis to drug development, due to the ease of molecular design. Recently a hydrogel-based combinatory phage display library was developed and protease-mimicking peptides were identified. Here we advanced the previous discovery to apply one of these catalytic peptides for the synthesis of bimetal oxide nanocrystals through the catalytic ester-elimination pathway. Conventional bimetal oxide crystallization usually requires high temperatures above several hundred °C; however, this catalytic peptide could grow superparamagnetic MnFe2O4 nanocrystals at 4°C. Superconducting quantum interference device (SQUID) analysis revealed that MnFe2O4 nano-crystals grown by the catalytic peptide exhibit superpara-magnetism. This study demonstrates the usefulness of protease-mimicking catalytic peptides in the field of material synthesis.

7.
ACS Appl Mater Interfaces ; 7(50): 27703-12, 2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26615668

ABSTRACT

Cost-efficient nanoparticle carbocatalysts composed of fluorescent carbon dots (CDs) embedded in carbon matrix were synthesized via one-step acid-assisted hydrothermal treatment (200 °C) of glucose. These as-synthesized CD-based carbocatalysts have excellent photoluminescence (PL) properties over a broad range of wavelengths and the external visible or NIR irradiation on the carbocatalysts could produce electrons to form electron-hole (e(-)-h(+)) pairs on the surface of carbocatalysts. These restant electron-hole pairs will react with the adsorbed oxidants/reducers on the surface of the CD-based carbocatalysts to produce active radicals for reduction of 4-nitrophenol and degradation of dye molecules. Moreover, the local temperature increase over CD-based carbocatalyst under NIR irradiation can enhance the electron transfer rate between the organic molecules and CD-based carbocatalysts, thus obviously increase the catalytic activity of the CD-based carbocatalyst for the reduction of 4-nitrophenol and the degradation of dye molecules. Such a type of CD-based carbocatalysts with excellent properties and highly efficient metal-free photocatalytic activities is an ideal candidate as photocatalysts for the reduction of organic pollutants under visible light and NIR radiation.


Subject(s)
Carbon/chemistry , Environmental Pollutants/chemistry , Nanoparticles/chemistry , Photochemical Processes , Biomass , Catalysis , Coloring Agents/chemistry , Light , Nitrophenols/chemistry , Titanium/chemistry
8.
Isr J Chem ; 55(6-7): 749-755, 2015 Jun.
Article in English | MEDLINE | ID: mdl-31666749

ABSTRACT

Peptides that possess specific affinity to distinct crystal facets have been reported previously. However, their adsorption behavior in terms of the crystal sizes and shapes is less exploited. Herein, we isolate several phage clones that show the strong affinity to {100} of Pd at a neutral pH from the M13 phage library, and among them the phages that have shape selectivity to the cubic structure are identified by eliminating ones that bind randomly shaped Pd nanoparticles (NPs). Since Pd nanocube-binding phages are eluted by lowering pH values in the biopanning process, the selected phages (and their binding peptides displayed on protein pIII) can be released from Pd surfaces through pH changes. We used this feature to modulate the capping density of selected peptides on NPs. For example, when less peptides are capped on Pd nanocubes by lowering the pH values, the shape of the nanocubes is deformed and some evolve into a concave shape, indicating that Pd atoms are released from the less protected {100} facet selectively due to the higher surface energy. This type of crystalline facet-recognizing peptides can be applied for smart capping agents that not only bind target crystalline planes, but also modify their coverage on the specific surfaces with pH changes. The peptide-capping agents could be useful to fabricate NPs with characteristic shapes through etching and adsorption of atoms on specific crystalline planes of seed nanocrystals.

9.
Nanoscale ; 6(13): 7443-52, 2014 Jul 07.
Article in English | MEDLINE | ID: mdl-24881520

ABSTRACT

Fluorescent carbon nanoparticles (FCNPs) have been successfully immobilized into poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)] nanogels based on one-pot precipitation copolymerization of NIPAM monomers with hydrogen bonded FCNP-AAm complex monomers in water. The resultant poly(NIPAM-AAm)-FCNP hybrid nanogels can combine functions from each building block for fluorescent temperature sensing, cell imaging, and near-infrared (NIR) light responsive drug delivery. The FCNPs in the hybrid nanogels not only emit bright and stable photoluminescence (PL) and exhibit up-conversion PL properties, but also increase the loading capacity of the nanogels for curcumin drug molecules. The reversible thermo-responsive swelling/shrinking transition of the poly(NIPAM-AAm) nanogel can not only modify the physicochemical environment of the FCNPs to manipulate the PL intensity for sensing the environmental temperature change, but also regulate the releasing rate of the loaded anticancer drug. In addition, the FCNPs embedded in the nanogels can convert the NIR light to heat, thus an exogenous NIR irradiation can further accelerate the drug release and enhance the therapeutic efficacy. The hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells upon laser excitation. The demonstrated hybrid nanogels with nontoxic and optically active FCNPs immobilized in responsive polymer nanogels are promising for the development of a new generation of multifunctional materials for biomedical applications.


Subject(s)
Acrylic Resins/chemistry , Carbon/chemistry , Drug Carriers/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/radiation effects , Curcumin/chemistry , Curcumin/toxicity , Infrared Rays , Mice , Microscopy, Confocal , Nanogels , Phase Transition , Polyethylene Glycols/metabolism , Polyethyleneimine/metabolism , Temperature
10.
Nat Commun ; 5: 3870, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24828960

ABSTRACT

The shape-controlled synthesis of nanoparticles was established in single-phase solutions by controlling growth directions of crystalline facets on seed nanocrystals kinetically; however, it was difficult to rationally predict and design nanoparticle shapes. Here we introduce a methodology to fabricate nanoparticles in smaller sizes by evolving shapes thermodynamically. This strategy enables a more rational approach to fabricate shaped nanoparticles by etching specific positions of atoms on facets of seed nanocrystals in reverse micelle reactors where the surface energy gradient induces desorption of atoms on specific locations on the seed surfaces. From seeds of 12-nm palladium nanocubes, the shape is evolved to concave nanocubes and finally hollow nanocages in the size ~10 nm by etching the centre of {200} facets. The high surface area-to-volume ratio and the exposure of a large number of palladium atoms on ledge and kink sites of hollow nanocages are advantageous to enhance catalytic activity and recyclability.


Subject(s)
Metal Nanoparticles , Palladium , Micelles , Nanostructures , Surface Properties , Thermodynamics
11.
Biomater Sci ; 2(6): 915-923, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-32481822

ABSTRACT

Multifunctional hybrid nanoparticles (NPs, ∼100 nm) that combine magnetic Fe3O4 nanocrystals and fluorescent carbon dots (CDs) in porous carbon (C) were successfully synthesized using a one-pot solvothermal method by simply increasing the H2O2 concentration. The resultant Fe3O4@C-CDs hybrid NPs not only demonstrate excellent magnetic responsive properties (Ms = 32.5 emu g-1) and magnetic resonance imaging ability (r = 674.4 mM-1 s-1) from the Fe3O4 nanocrystal core, but also exhibit intriguing photoluminescent (quantum yield ∼6.8%) properties including upconversion fluorescence and excellent photostability from the CDs produced in the porous carbon. The hybrid NPs can enter the intracellular region and illuminate mouse melanoma B16F10 cells under different excitation wavelengths. Meanwhile, the mesoporous carbon shell and hydrophilic surface functional groups endow the hybrid NPs with high loading capacity (835 mg g-1) for the anti-cancer drug doxorubicin and excellent stability in aqueous solutions. More importantly, the hybrid NPs can absorb and convert near-infrared (NIR) light to heat due to the existence of CDs, and thus, can realise NIR-controlled drug release and combined photothermo/chemotherapy for high therapeutic efficacy. Such nanostructured Fe3O4@C-CDs hybrid NPs demonstrate great promise towards advanced nanoplatforms for simultaneous imaging diagnostics and high efficacy therapy.

12.
ACS Appl Mater Interfaces ; 5(19): 9446-53, 2013 Oct 09.
Article in English | MEDLINE | ID: mdl-24001139

ABSTRACT

A simple and facile synthetic strategy is developed to prepare a new class of multifunctional hybrid nanoparticles (NPs) that can integrate a magnetic core with silver nanocrystals embedded in porous carbon shell. The method involves a one-step solvothermal synthesis of Fe3O4@C template NPs with Fe3O4nanocrystals in the core protected by a porous carbon shell, followed by loading and in situ reduction of silver ions in the carbon shell in water at room temperature. The core-satellite and dumbbell-like nanostructures of the resulted Fe3O4@C-Ag hybrid NPs can be readily controlled by loading amount of silver ions. The hybrid NPs can efficiently catalyze the reduction reaction of organic dyes in water. The easy magnetic separation and high stability of the catalytically active silver nanocrystals embedded in the carbon shell enable the hybrid NPs to be recycled for reuse as catalysts. The hybrid NPs can also overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells in multicolor modal, with no cytotoxicity. Such porous carbon protected Fe3O4@C-Ag hybrid NPs with controllable nanostructures and a combination of magnetic and noble metallic components have great potential for a broad range of applications in the catalytic industry and biomedical field.


Subject(s)
Magnetite Nanoparticles , Melanoma, Experimental/pathology , Silver , Animals , Carbon/chemistry , Catalysis , Cell Tracking , Melanoma, Experimental/diagnosis , Mice , Nanopores , Silver/chemistry
13.
Soft Matter ; 8(26): 6871-6875, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22982983

ABSTRACT

Genetically-engineered collagen peptides were assembled into freestanding films when QDs are co-assembled as joints between collagen domains. These peptide based films show excellent mechanical properties with Young's modulus of ~20 GPa, much larger than most of multi-composite polymer films and previously reported freestanding nanoparticle-assembled sheets, and it is even close to the bone tissue in nature. These films show little permanent deformation under small indentation while the mechanical hysteresis becomes remarkable when the load approaches near and beyond the rupture point, which is also characteristic to the bone tissue.

14.
Small ; 8(9): 1341-4, 2012 May 07.
Article in English | MEDLINE | ID: mdl-22378709

ABSTRACT

By mimicking the stabilization of bacterial membranes with S-layer proteins, a novel process to fabricate highly stable protein microcapsules is introduced. In this strategy, engineered collagen peptides with site-specific biotinylation are assembled into microcapsules on the oil-in-water droplets, and the resulting microcapsules are reinforced by biomolecular-recognition-based cross-linking with the protein. Furthermore the microcapsules are shown to be versatile scaffolds for developing functionalized hierarchical colloidosomes for important biotechnological applications.


Subject(s)
Capsules/chemistry , Peptides/chemistry , Proteins/chemistry , Water/chemistry , Biomimetics , Collagen/chemistry , Oils/chemistry , Surface Properties
15.
RSC Adv ; 2(13): 5516-5519, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-31632655

ABSTRACT

A new biomimetic approach for the one-pot synthesis of ZnO nanorods at neutral pH and room temperature is introduced; self-assembly of the ZnO-mineralzing peptides (CN111, PAGLQVGFAVEV-GGGSC) with Zn ions as bundles of nanofibers in the gel form leads to the growth of ZnO nanorod (NRD) inside the gel. This new nanomaterial synthesis may open a new strategy by using the catalytic peptide gels as nanomaterial reactors.

SELECTION OF CITATIONS
SEARCH DETAIL
...