Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Sci ; 38(5): 776-784, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30341512

ABSTRACT

Clinically, coronary artery bypass grafting (CABG) or percutaneous coronary intervention (PCI) is generally used to treat patients with ischemic heart failure. However, the optimal treatment strategy remains unknown. This study examined the efficacy of the two coronary revascularization strategies for severe ischemic heart failure by using a meta-analysis. Studies comparing the efficacy of CABG and PCI were obtained from PubMed, EMBASE, Google Scholar and Cochrane Central Register of Controlled Trials (CENTRAL). The quality of each eligible article was evaluated by Newcastle-Ottawa Quality Assessment Scale (NOS), and the meta-analysis was performed using Stata version 12.0 software. Eventually, 12 studies involving 9248 patients (n=4872 in CABG group; n=4376 in PCI group) were subject to the meta-analysis for subsequent pooling calculation. The pooled hazard ratio (HR) [HR=0.83, 95% CI (0.76, 0.90), P<0.001; heterogeneity, P=0.218, I2=22.9%] of CABG compared with that of PCI revealed a statistical superiority of CABG to PCI in terms of the long-term mortality. Furthermore, CABG showed more advantages over PCI with respect to the incidence of myocardial infarction [HR=0.51, 95% CI (0.39, 0.67), P<0.001; heterogeneity, P=0.707, I2=0%] and repeat revascularization [HR=0.40, 95% CI (0.27, 0.59), P<0.001; heterogeneity, P<0.001, I2=80.1%]. It was concluded that CABG appears to be more advantageous than PCI for the treatment of ischemic heart failure in the given clinical setting.


Subject(s)
Heart Failure/surgery , Myocardial Infarction/surgery , Myocardial Ischemia/surgery , Myocardial Revascularization/methods , Coronary Artery Bypass , Drug-Eluting Stents , Heart Failure/drug therapy , Heart Failure/physiopathology , Humans , Myocardial Infarction/drug therapy , Myocardial Infarction/physiopathology , Myocardial Ischemia/drug therapy , Myocardial Ischemia/physiopathology , Percutaneous Coronary Intervention , Proportional Hazards Models
2.
J Huazhong Univ Sci Technolog Med Sci ; 33(5): 615-622, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24142708

ABSTRACT

The main pathogenesis of saphenous vein graft neointimal hyperplasia after coronary artery bypass grafting (CABG) is inflammation-caused migration and proliferation of vascular smooth muscle cells (VSMCs). Janus kinase 2/signal transducer and activators of transcription 3 (JAK2/STAT3) pathway is an important signaling pathway through which VSMCs phenotype conversion occurs. Suppressor of cytokine signaling 3 (SOCS3) is the classic negative feedback inhibitor of JAK2/STAT3 pathway. Growing studies show that SOCS3 plays an important anti-inflammatory role in numerous autoimmune diseases, inflammatory diseases and inflammation-related tumors. However, the effect and mechanism of SOCS3 on vein graft disease is unclear. The purpose of this study was to investigate the effects of SOCS3 on the inflammation, migration and proliferation of VSMCs in vitro and the mechanism. The small interference RNA plasmid targeting rat SOCS3 (SiRNA-rSOCS3) and the recombinant adenovirus vector carrying rat SOCS3 gene (pYrAd-rSOCS3) were constructed, and the empty plamid (SiRNA-control) and vector (pYrAd-GFP) only carrying GFP reported gene were constructed as control. The rat VSMCs were cultured. There were two large groups of A (SOCS3 up-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+pYrAd-rSOCS3 group, IL-6/IFN-γ(+)pYrAd-GFP group; and B (SOCS3 down-regulated): control group, IL-6/IFN-γ group, IL-6/IFN-γ+SiRNA-rSOCS3 group and IL-6/ IFN -γ+SiRNA-control group. The pYrAd-rSOCS3 and SiRNA-rSOCS3 were transfected into VSMCs induced by IL-6/IFN-γ. After 24 h, real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting were used to detect the mRNA and protein expression of SOCS3, STAT3 (only by Western blotting), P-STAT3 (only by Western blotting), IL-1ß, IL-6, TNF-α, MCP-1 and ICAM-1. The MTT, Transwell assay and flow cytometry were used to examine VSMCs proliferation, migration and cell cycle progression, respectively. As compared with control group, the mRNA and protein expression of SOCS3, STAT3, P-STAT3, IL-1ß, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly up-regulated in VSMCs stimulated by IL-6/IFN-γ. However, in VSMCs transfected with pYrAd-rSOCS3 before stimulation with IL-6/IFN-γ, the expression of SOCS3 mRNA and protein was further up-regulated, and that of STAT3, P-STAT3, IL-1ß, IL-6, TNF-α, MCP-1 and ICAM-1 was significantly down-regulated as compared with IL-6/IFN-γ group and IL-6/IFN-γ+pYrAd-GFP group. The expression of those related-cytokines in IL-6/IFN-γ+SiRNA-rSOCS3 group was markedly increased as compared with IL-6/IFN-γ group and IL-6/IFN-γ+SiRNA-control group. The absorbance (A) values, the number of cells migrating to the lower chamber, and percentage of cells in the G2/M+S phase were increased in VSMCs stimulated by IL-6/IFN-γ. In VSMCs incubated with pYrAd-rSOCS3 or SiRNA-rSOCS3 before IL-6/IFN-γ stimulation, the A values, the number of cells migrating to the lower chamber, and the percentage of cells in the G2/M+S phase were significantly decreased, and increased respectively. These results imply that IL-6/IFN-γ, strong inflammatory stimulators, can promote transformation of VSMCs phenotype form a quiescent contractile state to a synthetic state by activating JAK2/STAT3 pathway. Over-expresssed SOCS3 might inhibit pro-inflammatory effect, migration and growth of VSMCs by blocking STAT3 activation and phosphorylation. These data in vitro confirm that SOCS3 may play a negatively regulatory role in development and progression of vein graft failure. These conclusions can provide a novel strategy for clinical treatment of vein graft diseases and a new theoretic clue for related drug development.


Subject(s)
Cell Movement , Cell Proliferation , Cytokines/metabolism , Interferon-gamma/pharmacology , Interleukin-6/pharmacology , Myocytes, Smooth Muscle/drug effects , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Blotting, Western , Cell Cycle , Cells, Cultured , Cytokines/genetics , Flow Cytometry , Gene Expression , Inflammation Mediators/metabolism , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Janus Kinase 2/metabolism , Male , Muscle, Smooth, Vascular/cytology , Myocytes, Smooth Muscle/metabolism , Phosphorylation , RNA Interference , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...