Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 205
Filter
Add more filters











Publication year range
1.
Phytomedicine ; 134: 155988, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39226708

ABSTRACT

BACKGROUND: Endometrial cancer (EC) as one of the most prevalent malignancies in the female reproductive system, usually has a poor diagnosis and unfavorable health effects. Neferine (Nef), derived from the edible and medicinal lotus seed, has been known for its functional activity; however, its anti-cancer mechanism for EC remains elusive. PURPOSE: We explored the potential anti-cancer effects and underlying molecular mechanisms of Nef on EC. METHODS: The cytotoxicity was tested using MTT, and the cell cycle, apoptosis, Ca2+ levels, and the mitochondrial membrane potential (MMP) were observed through flow cytometry. After Nef treatment, differences in miRNA expression were identified using miRNA-seq data. Furthermore, western blot and immunohistochemistry (IHC) were employed to identify the proteins associated with apoptosis in both mice and cells. RESULTS: Nef treatment led to Ishikawa cell apoptosis and blocked cell proliferation in the G2/M phase. In total, 101 significantly different miRNA (p 〈 0.05 and |logFC| 〉 1) were obtained and subjected to GO and KEGG enrichment analysis, which revealed the Ca2+ and PI3K/AKT signaling pathways pertaining to apoptosis. Nef treatment significantly changed intracellular Ca2+ levels and MMP, activating the endoplasmic reticulum stress (ERS) pathway and the expression of key proteins in the mitochondrial pathway. In addition, Nef also inhibited the expression of key proteins in the PI3K/AKT pathway, causing cell apoptosis. Moreover, in mouse tumor tissues, the expression of CHOP, Bcl-2, Caspase 3, Cyto-c, and p-AKT was also consistent with the results in vitro. CONCLUSION: Nef could block the cell cycle and induce the activation of the mitochondrial apoptotic pathway involving the Ca2+-mediated ERS pathway and the PI3K/AKT pathway, thereby inducing apoptosis in EC cells, confirming the potential role of Nef in the prevention and treatment of EC.

2.
ACS Omega ; 9(30): 32920-32930, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39100354

ABSTRACT

Atherosclerosis (AS) is a common cardiovascular disease that poses a major threat to health. Schisandra chinensis is a medicinal and edible plant that is commonly used to treat cardiovascular diseases. In this paper, HPLC was used to detect and analyze 5 different components in Schisandra chinensis. Network pharmacological predictions highlight the PI3K/AKT/mTOR pathway as an important pharmacological pathway. The effective ingredient Schisandrin C was screened by the molecular docking technique. ox-LDL-induced HUVECs were used to construct the atherosclerosis model for further experimental verification. The results showed that Schisandrin C interfered with the PI3K/AKT/mTOR autophagy pathway. This study lays a foundation for the further application of Schisandrin C in the prevention and treatment of atherosclerosis in the future.

4.
J Adv Res ; 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39127099

ABSTRACT

INTRODUCTION: Exosome-miR-146a is significantly increased in patients with Atherosclerosis (AS), but its mechanism and effect on AS have not been fully elucidated. OBJECTIVES: To explore the change rule and mechanism of exosomes release, and the role and molecular mechanism of exosome-miR-146a in AS. METHODS: We isolated and identified exosomes from THP-1 macrophages after treating them with ox-LDL. Then used co-immunoprecipitation and silver staining to identify the proteins involved in regulating exosome release. PKH67 was used to label exosomes to confirm that cells can absorb them, and then co-culture with HVSMCs for cell proliferation and migration detection. The target genes of miR-146a were screened and identified through bioinformatics and luciferase activity assay, and the expression of miR-146a and related proteins was detected through qRT-PCR and Western blot in HUVECs. An AS model in LDLR-/- mice induced by a high-fat diet was developed to investigate the impact of exosome-miR-146a on AS. RESULTS: The results showed that experimental foam cells from AS showed higher expression of miR-146a. It was observed that NMMHC IIA and HSP70 interacted to regulate the release of exosomes. And HUVECs can absorb exosomes derived from macrophages. In addition, we also found that miR-146a directly targeted the SMAD4 gene to modulate the p38 MAPK signaling pathway, thereby mediating HUVECs damage. Furthermore, exosome-miR-146a induced abnormal proliferation and migration of HVSMCs. The expression of miR-146a was significantly reduced in miR-146a-mimics mice and increased in miR-146a inhibitor mice whereas the inhibition of miR-146a effectively reduced while increasing miR-146a worsened AS in mice. CONCLUSION: Our findings expressed the potential of miR-146a as a favorable therapeutic target for AS, however, further exploration is suggestive for deep understanding of the mechanisms regulating exosome-miR-146a release in vivo and to develop effective therapeutic strategies involving miR-146a.

5.
Metabolites ; 14(8)2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39195545

ABSTRACT

This study investigates the growth tolerance mechanisms of Chlorella pyrenoidosa to 3-fluorophenol and its removal efficiency by algal cells. Our results indicate that C. pyrenoidosa can tolerate up to 100 mg/L of 3-fluorophenol, exhibiting a significant hormesis effect characterized by initial inhibition followed by promotion of growth. In C. pyrenoidosa cells, the activities of superoxide dismutase (SOD) and catalase (CAT), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), were higher than or comparable to the control group. Metabolic analysis revealed that the 3-fluorophenol treatment activated pathways, such as glycerol phospholipid metabolism, autophagy, glycosylphosphatidylinositol (GPI)-anchored protein biosynthesis, and phenylpropanoid biosynthesis, contributed to the stabilization of cell membrane structures and enhanced cell repair capacity. After 240 h of treatment, over 50% of 3-fluorophenol was removed by algal cells, primarily through adsorption. Thus, C. pyrenoidosa shows potential as an effective biosorbent for the bioremediation of 3-fluorophenol.

6.
Food Funct ; 15(13): 6955-6965, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38864520

ABSTRACT

In this study, we investigated the ameliorative gut modulatory effect of carboxymethylated Lycium barbarum seed dreg insoluble dietary fiber (LBSDIDF) on hyperlipidemic mice. After seven weeks of insoluble dietary fiber (IDF) intervention, the results demonstrated that IDFs effectively inhibited body weight gain, with slimming and hypolipidemic effects, and improved liver histopathology by decreasing ALT, AST, TNF-α and IL-6, and increasing short-chain fatty acid (SCFA) levels in hyperlipidemic mice. With the increasing diversity and abundance of intestinal bacteria and decreasing ratio of Firmicutes to Bacteroidetes, intestinal flora facilitated cholesterol lowering effects in hyperlipidemic mice. Our research offers a novel concept for the use of LBSDIDF as a prebiotic to improve intestinal dysbiosis or as a preventive measure against obesity and dyslipidemia.


Subject(s)
Diet, High-Fat , Dietary Fiber , Gastrointestinal Microbiome , Hyperlipidemias , Lycium , Seeds , Animals , Mice , Diet, High-Fat/adverse effects , Dietary Fiber/pharmacology , Hyperlipidemias/drug therapy , Hyperlipidemias/diet therapy , Seeds/chemistry , Male , Lycium/chemistry , Gastrointestinal Microbiome/drug effects , Mice, Inbred C57BL , Liver/drug effects , Liver/metabolism , Intestines/drug effects , Intestines/microbiology , Fatty Acids, Volatile/metabolism , Humans
7.
Food Chem ; 457: 140092, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-38901347

ABSTRACT

The main bioavailable phenolics from of Gongju (GJ) and their mechanism for hepato-protection remain unclear. To select the GJ phenolics with high bioavailability, chrysanthemum digestion and Caco-2 cells were used and their hepato-protective potential were examined by using AML-12 cells. The digestive recovery and small intestinal transit rate of the main phenolic compounds ranged from 28.52 to 69.53% and 6.57% âˆ¼ 15.50%, respectively. Among them, chlorogenic acid, 3,5-dicaffeoylquinic acid, and 1,5-dicaffeoylquinic acid, showed higher small intestinal transit rates and digestive recoveries. Furthermore, we found that by increasing intracellular Catalase (CAT) and Superoxide dismutase (SOD) viability and lowering Malondialdehyde (MDA) level (P < 0.05), 3,5-dicaffeoylquinic acid significantly mitigated the oxidative damage of AML-12 liver cells more than the other two phenolics. Our results demonstrated that 3,5-dicaffeoylquninic acid was the primary phenolic compounds in GJ that effectively reduced liver damage, providing a theoretical basis for the development of GJ as a potentially useful resource for hepatoprotective diet.


Subject(s)
Chrysanthemum , Oxidative Stress , Phenols , Chrysanthemum/chemistry , Humans , Phenols/chemistry , Phenols/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Superoxide Dismutase/metabolism , Cell Line , Malondialdehyde/metabolism , Caco-2 Cells , Catalase/metabolism , Antioxidants/pharmacology , Antioxidants/chemistry
8.
Food Chem X ; 22: 101497, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38840725

ABSTRACT

The demand for crayfish surimi products has grown recently due to its high protein content. This study examined the effects of varying κ-carrageenan (CAR) and crayfish surimi (CSM) concentrations on the gelling properties of CAR-CSM composite gel and its intrinsic formation process. Our findings demonstrated that with the increasing concentration of carrageenan, the quality of CAR-CSM exhibited rising trend followed by subsequently fall. Based on the textural qualities, the highest quality CAR-CSM was achieved at 0.3% carrageenan addition. With the exception of chewiness, and the cooking loss of the gel system was 1.62%, whiteness was 82.35%, and the percentage of ß-sheets increased to 57.18%. Further increase in CAR (0.4-0.5%) addition resulted in internal build-up of LCAR-CSM, conversion of intermolecular forces into disulfide bonds and gel breakage. This study exudes timely recommendations for extending the CAR application for the continuous development of crayfish surimi and its derivatives and its overall economic worth.

9.
Biol Trace Elem Res ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819778

ABSTRACT

Recent studies have emphasized the beneficial effects of 50 µM selenium (Se) on the growth and development of the silkworm, Bombyx mori; however, less is known about its underlying mechanism. To unravel the effect of 50 µM Se on the silkworms with neutral endopeptidase 24.11-like gene (NEP-L) knockdown, we injected small interfering RNA (siRNA) into the body cavity of silkworms. Phenotypic characteristics, mRNA expression of the Nep-L gene, and enriched Se content were evaluated in silkworms from each treatment group. After injecting Nep-L siRNA, the body weight, cocoon quality (cocoon weight, cocoon shell weight, and cocoon shell ratio), and egg production of silkworms were significantly reduced, without any significant effect on egg laying number. However, Se treatment could significantly alleviate the inhibition of body weight, and cocoon quality, without significant effects on egg laying number and production. In addition, the gene knockdown increased Se content in the B. mori. On the molecular level, the targeted Nep-L gene was inhibited significantly by siRNA interference, essentially with the strongest effect at 24 h after RNAi, followed by steady recovery. Among the three fragments, the siRNA of Nep-L-3 was the most effective in interfering with target gene expression. Nep-L gene showed the highest expression in Malpighian tubules (MTs). Both at the phenotypic and genotypic levels, our results show that Nep-L knockdown can exert a significant inhibitory effect on silkworms, and 50 µM Se can reverse the negative effect, which provides a practical prospect for strengthening the silkworm food industry.

10.
Food Chem ; 453: 139676, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38776795

ABSTRACT

The aim of this study was to prepare active intelligent gluten protein films using wheat gluten protein (WG) and apple pectin (AP) as film-forming matrices, and blueberry anthocyanin extract (BAE) as a natural indicator. SEM and FT-IR analyses demonstrated the successful immobilization of BAE in the film matrix by hydrogen bonding interactions and its compatibility with WG and AP. The resultant WG-AP/BAE indicator films demonstrated notable antioxidant activity, color stability, barrier qualities, pH and ammonia response sensitivity, and mechanical properties. Among them, WG-AP/BAE5 exhibited the best mechanical properties (TS: 0.83 MPa and EB: 242.23%) as well as the lowest WVP (3.92 × 10-8 g.m/m2.Pa.s), and displayed high sensitivity to volatile ammonia. In addition, WG-AP/BAE5 showed a color shift from purplish red to green to yellowish green, demonstrating the monitoring of shrimp freshness in real time. Consequently, this study offers a firm scientific foundation for the development of active intelligent gluten protein films and their use in food freshness assessments.


Subject(s)
Anthocyanins , Blueberry Plants , Food Packaging , Glutens , Triticum , Blueberry Plants/chemistry , Anthocyanins/chemistry , Glutens/chemistry , Animals , Triticum/chemistry , Food Packaging/instrumentation , Antioxidants/chemistry
11.
Food Chem ; 451: 139521, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38703735

ABSTRACT

This study explored the use of ionic liquid-ultrasound (ILU)-assisted extraction to enhance the extraction rate of Platycodon grandiflorum saponins (PGSs), and the content, extraction mechanism, antioxidant activity, whitening, and antiaging activity of PGSs prepared using ILU, ultrasound-water, thermal reflux-ethanol, and cellulase hydrolysis were compared. The ILU method particularly disrupted the cell wall, improved PGS extraction efficiency, and yielded a high total saponin content of 1.45 ± 0.02 mg/g. Five monomeric saponins were identified, with platycodin D being the most abundant at 1.357 mg/g. PGSs displayed excellent in vitro antioxidant activity and exhibited inhibitory effects on tyrosinase, elastase, and hyaluronidase. The results suggest that PGSs may have broad antioxidant, skin-whitening, and antiaging potential to a large extent. Overall, this study provided valuable insights into the extraction, identification, and bioactivities of PGSs, which could serve as a reference for future development and application of these compounds in the functional foods industry.


Subject(s)
Antioxidants , Ionic Liquids , Plant Extracts , Platycodon , Saponins , Antioxidants/chemistry , Antioxidants/pharmacology , Antioxidants/isolation & purification , Saponins/pharmacology , Saponins/chemistry , Saponins/isolation & purification , Platycodon/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/isolation & purification , Ionic Liquids/chemistry , Skin Aging/drug effects , Humans , Ultrasonic Waves
12.
BMC Plant Biol ; 24(1): 441, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778301

ABSTRACT

BACKGROUND: Goji (Lycium barbarum L.) is a perennial deciduous shrub widely distributed in arid and semiarid regions of Northwest China. It is highly valued for its medicinal and functional properties. Most goji varieties are naturally self-incompatible, posing challenges in breeding and cultivation. Self-incompatibility is a complex genetic trait, with ongoing debates regarding the number of self-incompatible loci. To date, no genetic mappings has been conducted for S loci or other loci related to self-incompatibility in goji. RESULTS: We used genome resequencing to create a high-resolution map for detecting de novo single-nucleotide polymorphisms (SNP) in goji. We focused on 229 F1 individuals from self-compatible '13-19' and self-incompatible 'new 9' varieties. Subsequently, we conducted a quantitative trait locus (QTL) analysis on traits associated with self-compatibility in goji berries. The genetic map consisted of 249,327 SNPs distributed across 12 linkage groups (LGs), spanning a total distance of 1243.74 cM, with an average interval of 0.002 cM. Phenotypic data related to self-incompatibility, such as average fruit weight, fruit rate, compatibility index, and comparable compatibility index after self-pollination and geitonogamy, were collected for the years 2021-2022, as well as for an extra year representing the mean data from 2021 to 2022 (2021/22). A total of 43 significant QTL, corresponding to multiple traits were identified, accounting for more than 11% of the observed phenotypic variation. Notably, a specific QTL on chromosome 2 consistently appeared across different years, irrespective of the relationship between self-pollination and geitonogamy. Within the localization interval, 1180 genes were annotated, including Lba02g01102 (annotated as an S-RNase gene), which showed pistil-specific expression. Cloning of S-RNase genes revealed that the parents had two different S-RNase alleles, namely S1S11 and S2S8. S-genotype identification of the F1 population indicated segregation of the four S-alleles from the parents in the offspring, with the type of S-RNase gene significantly associated with self-compatibility. CONCLUSIONS: In summary, our study provides valuable insights into the genetic mechanism underlying self-compatibility in goji berries. This highlights the importance of further positional cloning investigations and emphasizes the importance of integration of marker-assisted selection in goji breeding programs.


Subject(s)
Chromosome Mapping , Fruit , Lycium , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Lycium/genetics , Lycium/physiology , Fruit/genetics , Fruit/physiology , Self-Incompatibility in Flowering Plants/genetics , Phenotype , China
13.
Food Res Int ; 184: 114270, 2024 May.
Article in English | MEDLINE | ID: mdl-38609246

ABSTRACT

This work set out to investigate how the physicochemical markers, volatiles, and metabolomic characteristics of mixed fermented the fermentation of Lycium barbarum and Polygonatum cyrtonema compound wine (LPCW) from S. cerevisine RW and D. hansenii AS2.45 changed over the course of fermentation. HS-SPME-GC-MS combined with non-targeted metabolomics was used to follow up and monitor the fermentation process of LPCW. In total, 43 volatile chemical substances, mostly alcohols, esters, acids, carbonyl compounds, etc., were discovered in LPCW. After 30 days of fermentation, phenylethyl alcohol had increased to 3045.83 g/mL, giving off a rose-like fresh scent. The biosynthesis of valine, leucine, and isoleucine as well as the metabolism of alanine, aspartic acid, and glutamic acid were the major routes that led to the identification of 1385 non-volatile components in total. This study offers a theoretical foundation for industrial development and advances our knowledge of the fundamental mechanism underlying flavor generation during LPCW fermentation.


Subject(s)
Lycium , Polygonatum , Wine , Fermentation , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction
14.
Food Funct ; 15(8): 4109-4121, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38597225

ABSTRACT

While there have been advancements in understanding the direct and indirect impact of riboflavin (B2) on intestinal inflammation, the precise mechanisms are still unknown. This study focuses on evaluating the effects of riboflavin (B2) supplementation on a colitis mouse model induced with 3% dextran sodium sulphate (DSS). We administered three different doses of oral B2 (VB2L, VB2M, and VB2H) and assessed its impact on various physiological and biochemical parameters associated with colitis. Mice given any of the three doses exhibited relative improvement in the symptoms and intestinal damage. This was evidenced by the inhibition of the pro-inflammatory cytokines TNF-α, IL-1ß, and CALP, along with an increase in the anti-inflammatory cytokine IL-10. B2 supplementation also led to a restoration of oxidative homeostasis, as indicated by a decrease in myeloperoxidase (MPO) and malondialdehyde (MDA) levels and an increase in reduced glutathione (GSH) and catalase (CAT) activities. B2 intervention showed positive effects on intestinal barrier function, confirmed by increased expression of tight junction proteins (occludin and ZO-1). B2 was linked to an elevated relative abundance of Actinobacteriota, Desulfobacterota, and Verrucomicrobiota. Notably, Verrucomicrobiota showed a significant increase in the VB2H group, reaching 15.03% relative abundance. Akkermansia exhibited a negative correlation with colitis and might be linked to anti-inflammatory function. Additionally, a remarkable increase in n-butyric acid, i-butyric acid, and i-valeric acid was reported in the VB2H group. The ameliorating role of B2 in gut inflammation can be attributed to immune system modulation as well as alterations in the gut microbiota composition, along with elevated levels of fecal SCFAs.


Subject(s)
Colitis , Dextran Sulfate , Gastrointestinal Microbiome , Homeostasis , Mice, Inbred C57BL , Riboflavin , Animals , Gastrointestinal Microbiome/drug effects , Mice , Colitis/drug therapy , Colitis/chemically induced , Dextran Sulfate/adverse effects , Riboflavin/pharmacology , Homeostasis/drug effects , Male , Disease Models, Animal , Cytokines/metabolism , Inflammation/drug therapy , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism
15.
Food Chem ; 451: 139441, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38678656

ABSTRACT

The utilization of agroindustrial wastes to enrich food protein resources and the exploration of their broader applications are crucial for addressing the food crisis and achieving sustainable development goals. In this study, reeling wastewater-derived sericin was hydrolyzed using papain and trypsin to prepare sericin peptide (SRP) and was used as an antihardening ingredient of high-protein nutrition bars (HPNBs). The mechanism of the antihardening effect of SRP was elucidated by investigating the content of advanced glycation end products and protein oxidation products (carbonyl and free sulfhydryl), and the molecular weight change of HPNBs during storage before and after the addition of SRP. Our results confirmed the fortification of HPNBs with SRP, which is beneficial for the promotion and expansion of sericin applications in the food industry, with positive implications for the rational utilization of protein resources and the enrichment of food protein sources.


Subject(s)
Peptides , Sericins , Wastewater , Sericins/chemistry , Wastewater/chemistry , Peptides/chemistry , Food Storage , Dietary Proteins/metabolism , Dietary Proteins/chemistry
16.
Food Chem X ; 22: 101271, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38495455

ABSTRACT

Recent studies have witnessed that chemical modification can improve the physicochemical and functional properties of plants' polysaccharides. Herein, we modified the natural Lycium barbarum seed dreg polysaccharides (LBSDPs) by sulfation (S-LBSDPs), phosphorylation (P-LBSDPs), and carboxymethylation (C-LBSDPs), and evaluated the chemical composition and antioxidant activity of their derivatives. Natural polysaccharides and their derivatives exhibited typical polysaccharide absorption peaks and characteristic group absorption peaks in FT-IR spectra along with maximum UV absorption. After modification, the total sugar and protein contents of the derivatives were decreased, whereas the uronic acid content was increased. Among the three derivatives, sulfated polysaccharides displayed excellent thermal stability. S-LBSDP and P-LBSDP showed the highest ABTS radical scavenging and reducing power while S-LBSDPs and C-LBSDPs showed better DPPH radical scavenging effect, and P-LBSDPs showed considerable Fe2+ chelating ability. Our data indicate that chemical modifications can impart a positive effect on the antioxidant potential of plant-derived polysaccharides.

17.
Food Chem X ; 22: 101270, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38495459

ABSTRACT

Lycium barbarum seed dregs (LBSDs) were used for carboxymethyl modification, resulting in three degree of substitution samples (DS). Based on the substitution degree, samples were designated as low degree of substitution insoluble dietary fiber (L-IDF), medium degree of substitution insoluble dietary fiber (M-IDF) and high degree of substitution insoluble dietary fiber (H-IDF). Physicochemical and functional properties of IDFs were examined in relation to carboxymethylation degree. Infrared Fourier transform spectroscopy (FT-IR) confirmed the carboxymethyl group. According to the results, IDF, L-IDF, M-IDF, and H-IDF acquired higher enthalpy changes, and their thermal stability improved significantly. A higher DS resulted in an increase in hydration properties such as water retention capacity and water swelling capacity, as well as functional properties such as glucose adsorption capacity, nitrite ion adsorption capacity, and cholesterol adsorption capacity. As a result, carboxymethylation could effectively enhance the biological properties of L. barbarum seed dreg insoluble dietary fiber (LBSDIDF).

18.
Foods ; 13(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540947

ABSTRACT

Carbon dots (CDs) have been proposed as photosensitizers in photodynamic treatment (PDT), owing to their excellent biological attributes and budding fruit preservation applications. In the present study, CDs (4.66 nm) were synthesized for photodynamic treatment to improve the quality attributes in post-harvest goji berries. The prepared CDs extended the storage time of the post-harvest goji berries by 9 d. The CD-mediated PDT postponed the hardness and decay index loss, reduced the formation of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2•-) significantly, and delayed the loss of vital nutrients like the total protein, phenols, and flavonoids. The CD-mediated PDT improved the catalase (CAT), ascorbate peroxidase (APX), peroxidase (POD), phenylalanine ammonia-lyase (PAL), glutathione reductase (GR), and superoxide dismutase (SOD) activities, but did not improve polyphenol oxidase (PPO) activity. In addition, The CD-mediated PDT induced the accumulation of ascorbic acid (ASA) and glutathione (GSH). Overall, a CD-mediated PDT could extend the storage time and augment the quality attributes in post-harvest fresh goji berries by regulating the antioxidant system.

19.
Bioresour Technol ; 394: 130265, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160850

ABSTRACT

The over-reliance on fossil fuels and resultant environmental issues necessitate sustainable alternatives. Microbial fermentation of biomass for malic acid production offers a viable, eco-friendly solution, enhancing resource efficiency and minimizing ecological damage. This review covers three core aspects of malic acid biorefining: feedstocks, microbial strains, and metabolic pathways. It emphasizes the significance of utilizing biomass sugars, including the co-fermentation of different sugar types to improve feedstock efficiency. The review discusses microbial strains for malic acid fermentation, addressing challenges related to by-products from biomass breakdown and strategies for overcoming them. It delves into the crucial pathways and enzymes for malic acid production, outlining methods to optimize its metabolism, focusing on enzyme regulation, energy balance, and yield enhancement. These insights contribute to advancing the field of consolidated bioprocessing in malic acid biorefining.


Subject(s)
Malates , Sugars , Fermentation , Malates/metabolism , Metabolic Networks and Pathways , Biomass
20.
Food Chem X ; 20: 100879, 2023 Dec 30.
Article in English | MEDLINE | ID: mdl-38144720

ABSTRACT

Ultrasound is a promising green technology for modifying starch. The influence of ultrasound pretreatment (UPT) at diverse temperatures on the morphology and molecular structure of pea starch and its ability to form inclusion complexes with lipids were investigated. After UPT at each temperature, the starch granules retained an unchanged crystalline structure but exhibited notable changes in short-range molecular order and molecular structure. In comparison with the samples treated at 0 and 20 °C, pea starch subjected to UPT at 40 °C had a significantly (P ≤ 0.05) higher complexing index with lauric acid (LA) and the starch-LA inclusion complex exhibited a higher enthalpy change, relative crystallinity, and resistant starch content. These differences were attributed to the higher temperature causing changes in the disruption points of starch chains and an enlargement in the molecular weight of linear chains. These results may promote the utilization of ultrasound for effective starch modification.

SELECTION OF CITATIONS
SEARCH DETAIL