Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Sensors (Basel) ; 23(2)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36679410

ABSTRACT

Media content forgery is widely spread over the Internet and has raised severe societal concerns. With the development of deep learning, new technologies such as generative adversarial networks (GANs) and media forgery technology have already been utilized for politicians and celebrity forgery, which has a terrible impact on society. Existing GAN-generated face detection approaches rely on detecting image artifacts and the generated traces. However, these methods are model-specific, and the performance is deteriorated when faced with more complicated methods. What's more, it is challenging to identify forgery images with perturbations such as JPEG compression, gamma correction, and other disturbances. In this paper, we propose a global-local facial fusion network, namely GLFNet, to fully exploit the local physiological and global receptive features. Specifically, GLFNet consists of two branches, i.e., the local region detection branch and the global detection branch. The former branch detects the forged traces from the facial parts, such as the iris and pupils. The latter branch adopts a residual connection to distinguish real images from fake ones. GLFNet obtains forged traces through various ways by combining physiological characteristics with deep learning. The method is stable with physiological properties when learning the deep learning features. As a result, it is more robust than the single-class detection methods. Experimental results on two benchmarks have demonstrated superiority and generalization compared with other methods.


Subject(s)
Benchmarking , Data Compression , Gamma Rays , Internet , Iris
SELECTION OF CITATIONS
SEARCH DETAIL