Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(18)2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37766001

ABSTRACT

Soil moisture (SM), as one of the crucial environmental factors, has traditionally been estimated using global navigation satellite system interferometric reflectometry (GNSS-IR) microwave remote sensing technology. This approach relies on the signal-to-noise ratio (SNR) reflection component, and its accuracy hinges on the successful separation of the reflection component from the direct component. In contrast, the presence of carrier phase and pseudorange multipath errors enables soil moisture retrieval without the requirement for separating the direct component of the signal. To acquire high-quality combined multipath errors and diversify GNSS-IR data sources, this study establishes the dual-frequency pseudorange combination (DFPC) and dual-frequency carrier phase combination (L4) that exclude geometrical factors, ionospheric delay, and tropospheric delay. Simultaneously, we propose two methods for estimating soil moisture: the DFPC method and the L4 method. Initially, the equal-weight least squares method is employed to calculate the initial delay phase. Subsequently, anomalous delay phases are detected and corrected through a combination of the minimum covariance determinant robust estimation (MCD) and the moving average filter (MAF). Finally, we utilize the multivariate linear regression (MLR) and extreme learning machine (ELM) to construct multi-satellite linear regression models (MSLRs) and multi-satellite nonlinear regression models (MSNRs) for soil moisture prediction, and compare the accuracy of each model. To validate the feasibility of these methods, data from site P031 of the Plate Boundary Observatory (PBO) H2O project are utilized. Experimental results demonstrate that combining MCD and MAF can effectively detect and correct outliers, yielding single-satellite delay phase sequences with a high quality. This improvement contributes to varying degrees of enhanced correlation between the single-satellite delay phase and soil moisture. When fusing the corrected delay phases from multiple satellite orbits using the DFPC method for soil moisture estimation, the correlations between the true soil moisture values and the predicted values obtained through MLR and ELM reach 0.81 and 0.88, respectively, while the correlations of the L4 method can reach 0.84 and 0.90, respectively. These findings indicate a substantial achievement in high-precision soil moisture estimation within a small satellite-elevation angle range.

2.
Sensors (Basel) ; 23(14)2023 Jul 20.
Article in English | MEDLINE | ID: mdl-37514834

ABSTRACT

The global navigation satellite system-interferometric reflectometry (GNSS-IR) technique has emerged as an effective coastal sea-level monitoring solution. However, the accuracy and stability of GNSS-IR sea-level estimation based on quadratic fitting are limited by the retrieval range of reflector height (RH range) and satellite-elevation range, reducing the flexibility of this technology. This study introduces a new GNSS-IR sea-level estimation model that combines local mean decomposition (LMD) and Lomb-Scargle periodogram (LSP). LMD can decompose the signal-to-noise ratio (SNR) arc into a series of signal components with different frequencies. The signal components containing information from the sea surface are selected to construct the oscillation term, and its frequency is extracted by LSP. To this end, observational data from SC02 sites in the United States are used to evaluate the accuracy level of the model. Then, the performance of LMD and the influence of noise on retrieval results are analyzed from two aspects: RH ranges and satellite-elevation ranges. Finally, the sea-level variation for one consecutive year is estimated to verify the stability of the model in long-term monitoring. The results show that the oscillation term obtained by LMD has a lower noise level than other signal separation methods, effectively improving the accuracy of retrieval results and avoiding abnormal values. Moreover, it still performs well under loose constraints (a wide RH range and a high-elevation range). In one consecutive year of retrieval results, the new model based on LMD has a significant improvement effect over quadratic fitting, and the root mean square error and mean absolute error of retrieval results obtained in each month on average are improved by 8.34% and 8.87%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...