Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36233957

ABSTRACT

High-speed steel is widely used for cutting tools due to its convenience of preparation and cost-effectiveness. Previous research has shown that deep cryogenic treatments improve the mechanical properties of high-speed steel, due to the transformation of the residual austenite and the precipitation of carbide, while few studies have researched martensitic changes. The variations in martensite multi-level microstructures in AISI M35 high-speed steel, treated over different deep cryogenic time periods, were investigated in this study. Meanwhile, the effect of these variations on the mechanical properties of the selected steel was discussed. It was found that prolonging deep cryogenic time facilitated an increase in dislocation, low-angle grain boundary, and the coincident-site lattice boundary (especially the twin boundary) of martensite. The size of the martensite block (db) and lath (dl) decreased with deep cryogenic time. However, the effect on the microstructure was limited when the cryogenic treatment time exceeded 5 h. The increase in dislocation decreased the temperature for carbide precipitation and promoted fine carbide precipitation during tempering. The refinement of martensite multi-level microstructures and the greater precipitation of fine carbides gave the tempered specimens excellent impact toughness. The impact toughness of the tempered samples undergoing deep cryogenic treatment for more than 5 h was about 32% higher than the sample without deep cryogenic treatment.

2.
Materials (Basel) ; 13(14)2020 Jul 12.
Article in English | MEDLINE | ID: mdl-32664636

ABSTRACT

A Gleeble-2000D thermal simulation machine was used to investigate the high-temperature hot compression deformation of an extruded Mg-16Al magnesium alloy under various strain rates (0.0001-0.1 s-1) and temperatures (523-673 K). Combined with the strain compensation Arrhenius equation and the Zener-Hollomon (Z) parameter, the constitutive equation of the alloy was constructed. The average deformation activation energy, Q, was 144 KJ/mol, and the strain hardening index (n ≈ 3) under different strain variables indicated that the thermal deformation mechanism was controlled by dislocation slip. The Mg-16Al alloy predicted by the Sellars model was characterized by a small dynamic recrystallization (DRX) critical strain, indicating that Mg17Al12 particles precipitated during the compression deformation promoted the nucleation of DRX. Hot processing maps of the alloy were established based on the dynamic material model. These maps indicated that the high Al content, precipitation of numerous Mg17Al12 phases, and generation of microcracks at low temperature and low strain rate led to an unstable flow of the alloy. The range of suitable hot working parameters of the experimental alloy was relatively small, i.e., the temperature range was 633-673 K, and the strain rate range was 0.001-0.1 s-1.

SELECTION OF CITATIONS
SEARCH DETAIL
...