Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37511383

ABSTRACT

In order to explore the molecular regulatory mechanism of temperature acclimation under long-term temperature stress in Acrossocheilus fasciatus, this study used high-throughput sequencing technology to analyze 60 days of breeding under five temperature conditions (12 °C, 16 °C, 20 °C, 24 °C, 28 °C). Compared with 20 °C, 9202, 4959 differentially expressed genes (DEGs) were discovered in low-temperature groups (12 °C, 16 °C), whereas 133 and 878 DEGs were discovered in high-temperature groups (24 °C, 28 °C), respectively. The KEGG functional enrichment analysis revealed that DEGs were primarily enriched in tight junction, PI3 K-Akt signaling pathway and protein digestion and absorption in low-temperature groups, and mainly enriched in proximal tubule bicarbonate reclamation, protein digestion and absorption, and HIF-1 signaling pathway in high-temperature groups. The viability of transcriptome sequencing-based screening of DEGs for temperature adaptation in A. fasciatus was shown by the selection of eight DEGs for further validation by quantitative real-time PCR (qRT-PCR), the findings of which were consistent with the RNA-seq data. According to the findings, protein digestion and absorption were primarily regulated by temperature variations, physiological stress was a significant regulator in regulation under high-temperature stress, and the immune system was a significant regulator in regulation under low-temperature stress. The transcriptional patterns of A. fasciatus under temperature stress are revealed in this study. This knowledge is crucial for understanding how A. fasciatus adapts to temperature and can help us better comprehend the environmental difficulties that A. fasciatus adaptation faces.


Subject(s)
Acclimatization , Stress, Physiological , Temperature , Acclimatization/genetics , Adaptation, Physiological/genetics , High-Throughput Nucleotide Sequencing , Gene Expression Profiling , Transcriptome
2.
Mitochondrial DNA B Resour ; 8(11): 1258-1262, 2023.
Article in English | MEDLINE | ID: mdl-38188434

ABSTRACT

In this paper, we first report the complete mitochondrial genome of Neolissochilus soroides. The main purpose of this study was to determine the mitochondrial genome and phylogenetic status of N. soroides. The length mitogenome was 16584 bp, containing 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes, and 3 non-coding control regions. The genome showed a slight A + T bias (A + T = 56.47%). 12 genes (ND1, COX2, ATP6, ND4L, ND5, ND6, ND2, ATP8, ND3, ND4, Cytb, COX3) start with ATG codon, besides one gene (COX1) start with GTG codon. Six genes (ND1, COX1, ATP6, ND4L, ND5, ND6) end with a TAA codon, 3 genes (ND2, ATP8, ND3) end with a TAG codon, and four genes (COX2, ND4, Cytb, COX3) end with the TA or T codon. The phylogenetic analysis showed that N. soroides was closely related to N. hendersoni. The mitogenome could have important implications for phylogeny, population genetics, and conservation of the N. soroides.

3.
Mitochondrial DNA B Resour ; 7(8): 1492-1493, 2022.
Article in English | MEDLINE | ID: mdl-35989879

ABSTRACT

Neolissochilus stracheyi Day 1871 is a rare specie of fish inhabit clear forest streams and rivers. In order to discuss the phylogenetic position of N. stracheyi, the mitochondrial genome was obtained by sequencing. The genome was 16,587 bp in length with an accession number OM203155. The AT contents were 56.59%. The location and composition of genes are consistent with published Cyprinids containing 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes, and 1 main non-coding regions. Sequence analysis showed that the mitochondrial genome of N. stracheyi has high sequence homology with other cyprinid fishes. Phylogenetic tree results showed that N. stracheyi is most closely related to Neolissochilus heterostomus. The mitochondrial sequence is of great significance for fish conservation, taxonomic status and resource exploitation.

SELECTION OF CITATIONS
SEARCH DETAIL
...