Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 883
Filter
1.
Article in English | MEDLINE | ID: mdl-39021338

ABSTRACT

For chronic wounds, frequent replacement of bandages not only increases the likelihood of secondary damage and the risk of cross infection but also wastes medication. Therefore, in situ real-time monitoring of the concentrations of residual drugs in bandages is crucial. Here, we propose a novel strategy that combines a triboelectric nanogenerator (TENG) with medical bandages to develop a smart bandage based on zeolite imidazolate framework TENG. During the process of wound healing, the electrical output of TENG changes with the continuous release of drugs. Based on the correlation between the electrical signal of TENG and drug concentration, the concentration of residual drugs in the bandage can be monitored in real-time in situ, guiding medical staff to replace the bandage at the most appropriate time. The smart bandage based on TENG provides a new strategy for in situ real-time monitoring of drug concentration and also provides an ideal and feasible solution for the field of biomedical drug sensing.

2.
Angew Chem Int Ed Engl ; : e202407833, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984901

ABSTRACT

Near-infrared light-emitting diodes (NIR LEDs) based on perovskite quantum dots (QDs) have produced external quantum efficiency (EQE) of ~15%. However, these high-performance NIR-QLEDs suffer from immediate carrier quenching because of the accumulation of migratable ions at the surface of the QDs. These uncoordinated ions and carriers - if not bound to the nanocrystal surface - serve as centers for exciton quenching and device degradation. In this work, we overcome this issue and fabricate high-performance NIR QLEDs by devising a ligand anchoring strategy, which entails dissolving the strong-binding ligand (Guanidine Hydroiodide, GAI) in the mediate-polar solvent. By employing the dye-sensitized device structure (phosphorescent indicator), we demonstrate the elimination of the interface defects. The treated QDs films exhibit an exciton binding energy of 117 meV: this represents a 1.5-fold increase compared to that of the control (74 meV). We report, as a result, the NIR QLEDs with an EQE of 21% which is a record among NIR perovskite QLEDs. These QLEDs also exhibit a 7-fold higher operational stability than that of the best previously reported NIR QLEDs. Furthermore, we demonstrate that the QDs are compatible with large-area QLEDs: we showcase 900 mm2 QLEDs with EQE approaching 20%.

3.
Virology ; 598: 110167, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39003988

ABSTRACT

Swine influenza viruses (SIVs), including H1N1, H1N2, and H3N2, have spread throughout the global pig population. Potential pandemics are a concern with the recent sporadic cross-species transmission of SIVs to humans. We collected 1421 samples from Guangdong, Fujian, Henan, Yunnan and Jiangxi provinces during 2017-2018 and isolated 29 viruses. These included 21H1N1, 5H1N2, and 3H3N2 strains. Genome analysis showed that the domestic epidemic genotypes of H1N1 were mainly G4 and G5 reassortant EA swine H1N1. These genotypes have a clear epidemic advantage. Two strains were Clade 6B.1 pdm/09H1N1, suggesting a possible pig-to-human transmission route. Notably, three new H1N2 genotypes were identified using the genomic backbones of G4 or G5 viruses for recombination. The identification of various subtypes and genotypes highlight the complexity and diversity of SIVs in China and need for continuous monitoring of SIV evolution to assess the risks and prepare for potential influenza pandemics.

4.
Biochem Biophys Res Commun ; 726: 150213, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-38964186

ABSTRACT

The F11 receptor (F11R) gene encoding junctional adhesion molecule A has been associated with gastric cancer (GC) and colorectal cancer (CRC), in which its role and regulation remain to be further elucidated. Recently F11R was also identified as a potential target of adenosine-to-inosine (A-to-I) mediated by the adenosine deaminases acting on RNA (ADARs). Herein, using RNA-Seq and experimental validation, our current study revealed an F11R RNA trinucleotide over-edited by ADAR, with its regulation of gene expression and clinical significance in four GC and three CRC cohorts. Our results found an over-edited AAA trinucleotide in an AluSg located in the F11R 3'-untranslated region (3'-UTR), which showed editing levels correlated with elevated ADAR expression across all GC and CRC cohorts in our study. Overexpression and knockdown of ADAR in GC and CRC cells, followed by RNA-Seq and Sanger sequencing, confirmed the ADAR-mediated F11R 3'-UTR trinucleotide editing, which potentially disrupted an RBM45 binding site identified by crosslinking immunoprecipitation sequencing (CLIP-seq) and regulated F11R expression in luciferase reporter assays. Moreover, the F11R trinucleotide editing showed promising predictive performance for diagnosing GC and CRC across GC and CRC cohorts. Our findings thus highlight both the potential biological and clinical significance of an ADAR-edited F11R trinucleotide in GC and CRC, providing new insights into its application as a novel diagnostic biomarker for both cancers.


Subject(s)
Adenosine Deaminase , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , RNA Editing , RNA-Binding Proteins , Stomach Neoplasms , Humans , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/diagnosis , Stomach Neoplasms/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Cohort Studies , 3' Untranslated Regions/genetics , Cell Line, Tumor , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Male , Female
5.
Phys Chem Chem Phys ; 26(28): 19217-19227, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38957117

ABSTRACT

An inverse sandwich structure has been computationally predicted for uranium boride and extended to the series of actinide elements (An) from Th to Cm. The electronic structure and chemical bonding of these novel compounds have been analyzed using density functional theory and multireference wave-function based methods. We report the trends in electronic structure and bonding for An2B8, and found that (d-π)π and (d-p)δ are the most important factors in the stability of An2B8. The (f-p)δ bond provides extra stabilization for Pa2B8 and U2B8, owing to the extensive interactions of An-B8-An, resulting in a short distance for the Pa-Pa and U-U bonds.

6.
Nanotechnology ; 35(38)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958589

ABSTRACT

Green energy technology is generally becoming one of hot issues that need to be solved due to the adverse effects on the environment of fossil fuels. One of the strategies being studied and developed by theorists and experimentalists is the use of photoelectrochemical (PEC) cells, which are emerging as a candidate to produce hydrogen from water splitting. However, creating photoelectrodes that meet the requirements for PEC water splitting has emerged as the primary obstacle in bringing this technology to commercial fruition. Here, we construct a heterostructure, which consists of MoS2/TiO2/Au nanoparticles (NPs) to overcome the drawbacks of the photoanode. Owing to the dependence on charge transfer, the bandgap of MoS2/TiO2and the utilization the Au NPs as a stimulant for charges separation of TiO2by localized surface plasmon resonances effect as well as the increase of hot electron injection to cathode, leading to photocatalytic activities are improved. The results have recorded a significant increase in the photocurrent density from 2.3µAcm-2of TiO2to approximately 16.3µAcm-2of MoS2/TiO2/Au NPs. This work unveils a promising route to enhance the visible light adsorption and charge transfer in photo-electrode of the PEC cells by combining two-dimensional materials with metal NPs.

7.
Br J Pharmacol ; 2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38881036

ABSTRACT

BACKGROUND AND PURPOSE: Ulcerative colitis (UC) is a refractory inflammatory disease associated with immune dysregulation. Elevated levels of heat shock protein (HSP) 90 in the ß but not α subtype were positively associated with disease status in UC patients. This study validated the possibility that pharmacological inhibition or reduction of HSP90ß would alleviate colitis, induced by dextran sulfate sodium, in mice and elucidated its mechanisms. EXPERIMENTAL APPROACH: Histopathological and biochemical analysis assessed disease severity, and bioinformatics and correlation analysis explained the association between the many immune cells and HSP90ß. Flow cytometry was used to analyse the homeostasis and transdifferentiation of Th17 and Treg cells. In vitro inhibition and adoptive transfer assays were used to investigate functions of the phenotypically transformed Th17 cells. Metabolomic analysis, DNA methylation detection and chromatin immunoprecipitation were used to explore these mechanisms. KEY RESULTS: The selective pharmacological inhibitor (HSP90ßi) and shHSP90ß significantly mitigated UC in mice and promoted transformation of Th17 to Treg cell phenotype, via Foxp3 transcription. The phenotypically-transformed Th17 cells by HSP90ßi or shHSP90ß were able to inhibit lymphocyte proliferation and colitis in mice. HSP90ßi and shHSP90ß selectively weakened glycolysis by stopping the direct association of HSP90ß and GLUT1, the key glucose transporter, to accelerate ubiquitination degradation of GLUT1, and enhance the methylation of Foxp3 CNS2 region. Then, the mediator path was identified as the "lactate-STAT5-TET2" cascade. CONCLUSION AND IMPLICATIONS: HSP90ß shapes the fate of Th17 cells via glycolysis-controlled methylation modification to affect UC progression, which provides a new therapeutic target for UC.

8.
Molecules ; 29(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38930893

ABSTRACT

The growing demand for wearable and attachable displays has sparked significant interest in flexible quantum-dot light-emitting diodes (QLEDs). However, the challenges of fabricating and operating QLEDs on flexible substrates persist due to the lack of stable and low-temperature processable charge-injection/-transporting layers with aligned energy levels. In this study, we utilized NiOx nanoparticles that are compatible with flexible substrates as a hole-injection layer (HIL). To enhance the work function of the NiOx HIL, we introduced a self-assembled dipole modifier called 4-(trifluoromethyl)benzoic acid (4-CF3-BA) onto the surface of the NiOx nanoparticles. The incorporation of the dipole molecules through adsorption treatment has significantly changed the wettability and electronic characteristics of NiOx nanoparticles, resulting in the formation of NiO(OH) at the interface and a shift in vacuum level. The alteration of surface electronic states of the NiOx nanoparticles not only improves the carrier balance by reducing the hole injection barrier but also prevents exciton quenching by passivating defects in the film. Consequently, the NiOx-based red QLEDs with interfacial modification demonstrate a maximum current efficiency of 16.1 cd/A and a peak external quantum efficiency of 10.3%. This represents a nearly twofold efficiency enhancement compared to control devices. The mild fabrication requirements and low annealing temperatures suggest potential applications of dipole molecule-modified NiOx nanoparticles in flexible optoelectronic devices.

9.
Br J Radiol ; 97(1160): 1423-1430, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38870537

ABSTRACT

OBJECTIVES: To investigate the clinical character of differentiated thyroid cancer (DTC) coexisting with Hashimoto's thyroiditis (HT) and provide state-of-art evidence for personalized radioactive iodine-131 therapy (RAIT) for patients coexisting with HT. METHODS: From January 2000 to January 2023, PubMed, Embase, and Web of Science databases were searched for relevant original articles that published in English on the RAIT efficacy for DTC with HT. RevMan 5.4 and Stata 17.0 were used for data analysis. RESULTS: Eleven studies involving 16 605 DTC patients (3321 with HT) were included. HT was more frequent in female (OR: 2.90, 95% confidence interval [CI]: 1.77-4.76, P < .00001). The size of tumour (MD: -0.20, 95% CI: -0.30 to -0.11), extrathyroidal extension rate (OR: 0.77, 95% CI: 0.67-0.90), and metastasis rate (OR: 0.18, 95% CI: 0.08-0.41) were less in HT, but tumour, node, metastasis (TNM) stage had no significant difference among HT and non-HT group. Disease-free survival (DFS) rate (OR: 1.96, 95% CI: 1.57-2.44, P < .00001), 5-year DFS (OR: 1.73, 95% CI: 1.04-2.89, P = .04), and 10-year DFS (OR: 1.56, 95% CI: 1.17-2.09, P = .003) were higher in HT group. The recurrent (OR: 0.62, 95% CI: 0.45-0.83, P = .002), RAIT dosage (MD = -38.71, 95% CI: -60.86 to -16.56, P = .0006), and treatment (MD: -0.13, 95% CI: -0.22 to -0.03, P = .008) were less in HT group. CONCLUSIONS: DTC coexisting with HT was associated with less invasion. DFS of HT group was higher than non-HT group after RAIT. Low-dose treatment did not impair the efficacy of RAIT in DTC with HT. ADVANCES IN KNOWLEDGE: Hashimoto's thyroiditis is a risk for DTC, but it minimalizes the progression of cancer and enhance the efficacy of RAIT, which should be considered in personalizing RAIT.


Subject(s)
Hashimoto Disease , Iodine Radioisotopes , Thyroid Neoplasms , Female , Humans , Hashimoto Disease/complications , Hashimoto Disease/radiotherapy , Iodine Radioisotopes/therapeutic use , Thyroid Neoplasms/radiotherapy , Thyroid Neoplasms/complications , Male
10.
World J Gastrointest Surg ; 16(5): 1461-1466, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38817275

ABSTRACT

BACKGROUND: Hem-o-lok clips are typically used to control the cystic duct and vessels during laparoscopic cholecystectomy (LC) and common bile duct exploration for stones in the bile duct and gallbladder. Here, we report a unique example of Hem-o-lok clip movement towards the duodenal bulb after LC, appearing as a submucosal tumor (SMT). Additionally, we provide initial evidence of gradual and evolving endoscopic manifestations of Hem-o-lok clip migration to the duodenal bulb wall and review the available literature. CASE SUMMARY: A 72-year-old man underwent LC for gallstones, and Hem-o-lok clips were used to ligate both the cystic duct and cystic artery. Esophagogastroduodenoscopy (EGD) 2 years later revealed an SMT-like lesion in the duodenal bulb. Due to the symptomatology, the clinical examination did not reveal any major abnormalities, and the patient was followed up as an outpatient. A repeat EGD performed 5 months later revealed an SMT-like lesion in the duodenal bulb with raised edges and a central depression. A third EGD was conducted, during which a Hem-o-lok clip was discovered connected to the front side of the duodenum. The clip was extracted easily using biopsy forceps, and no complications occurred. Two months after the fourth EGD, the scar was surrounded by normal mucosa. CONCLUSION: Clinicians should be aware of potential post-LC complications. Hem-o-lok clips should be removed if symptomatic.

11.
Acta Pharmacol Sin ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811775

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor precursor homologous domain A (EGF-A) of low-density lipoprotein receptor (LDLR) in the liver and triggers the degradation of LDLR via the lysosomal pathway, consequently leading to an elevation in plasma LDL-C levels. Inhibiting PCSK9 prolongs the lifespan of LDLR and maintains cholesterol homeostasis in the body. Thus, PCSK9 is an innovative pharmacological target for treating hypercholesterolemia and atherosclerosis. In this study, we discovered that E28362 was a novel small-molecule PCSK9 inhibitor by conducting a virtual screening of a library containing 40,000 compounds. E28362 (5, 10, 20 µM) dose-dependently increased the protein levels of LDLR in both total protein and the membrane fraction in both HepG2 and AML12 cells, and enhanced the uptake of DiI-LDL in AML12 cells. MTT assay showed that E28362 up to 80 µM had no obvious toxicity in HepG2, AML12, and HEK293a cells. The effects of E28362 on hyperlipidemia and atherosclerosis were evaluated in three different animal models. In high-fat diet-fed golden hamsters, administration of E28362 (6.7, 20, 60 mg·kg-1·d-1, i.g.) for 4 weeks significantly reduced plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and PCSK9 levels, and reduced liver TC and TG contents. In Western diet-fed ApoE-/- mice (20, 60 mg·kg-1·d-1, i.g.) and human PCSK9 D374Y overexpression mice (60 mg·kg-1·d-1, i.g.), administration of E28362 for 12 weeks significantly decreased plasma LDL-C levels and the area of atherosclerotic lesions in en face aortas and aortic roots. Moreover, E28362 significantly increased the protein expression level of LDLR in the liver. We revealed that E28362 selectively bound to PCSK9 in HepG2 and AML12 cells, blocked the interaction between LDLR and PCSK9, and induced the degradation of PCSK9 through the ubiquitin-proteasome pathway, which finally resulted in increased LDLR protein levels. In conclusion, E28362 can block the interaction between PCSK9 and LDLR, induce the degradation of PCSK9, increase LDLR protein levels, and alleviate hyperlipidemia and atherosclerosis in three distinct animal models, suggesting that E28362 is a promising lead compound for the treatment of hyperlipidemia and atherosclerosis.

13.
Vaccines (Basel) ; 12(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38793794

ABSTRACT

The COVID-19 pandemic has raised the standard regarding the current vaccine development pace, as several messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccines have proved their ability to induce strong immunogenicity and protective efficacy. We developed 1-methylpseudouridine-containing mRNA-LNP vaccines, expressing either the more conserved SARS-CoV-2 nucleoprotein (mRNA-N) or spike protein (mRNA-S), both based on the prototypic viral sequences. When combining both mRNA-S and mRNA-N together (mRNA-S+N), the vaccine showed high immunogenicity and broad protection against different SARS-CoV-2 variants, including wildtype, Delta, BA.1, BA.5, and BQ.1. To better understand the mechanisms behind this broad protection obtained by mRNA-S+N, we analyzed innate and adaptive immune parameters following vaccination in mice. Compared to either mRNA-S or mRNA-N alone, mice vaccinated with mRNA-S+N exhibited an increase in the innate immune response, as depicted by the higher cytokine (IL-6 and chemokine (MCP-1) levels. In addition, lymph node immunophenotyping showed the maturation and activation of dendritic cells and natural killer cells, respectively. To understand the adaptive immune response, RNA-Seq analyses of the lung and spleen samples of the vaccinated mice were performed in parallel and revealed a stronger immune gene-expression profile in the lung than that in the spleen. Compared to mRNA-S alone, mRNA-S+N vaccination elicited higher levels of expression for genes involved in multiple immune pathways, including T cells, cytokine signaling, antigen presentation, B cells, and innate immunity. Together, our studies provide immunological insights into the mechanisms of broad protection conferred by dual mRNA vaccination against SARS-CoV-2 variants.

14.
Nat Methods ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783067

ABSTRACT

Spatially resolved transcriptomics (SRT) technologies have significantly advanced biomedical research, but their data analysis remains challenging due to the discrete nature of the data and the high levels of noise, compounded by complex spatial dependencies. Here, we propose spaVAE, a dependency-aware, deep generative spatial variational autoencoder model that probabilistically characterizes count data while capturing spatial correlations. spaVAE introduces a hybrid embedding combining a Gaussian process prior with a Gaussian prior to explicitly capture spatial correlations among spots. It then optimizes the parameters of deep neural networks to approximate the distributions underlying the SRT data. With the approximated distributions, spaVAE can contribute to several analytical tasks that are essential for SRT data analysis, including dimensionality reduction, visualization, clustering, batch integration, denoising, differential expression, spatial interpolation, resolution enhancement and identification of spatially variable genes. Moreover, we have extended spaVAE to spaPeakVAE and spaMultiVAE to characterize spatial ATAC-seq (assay for transposase-accessible chromatin using sequencing) data and spatial multi-omics data, respectively.

15.
Hum Gene Ther ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38767504

ABSTRACT

Early diagnosis and intervention are pivotal in reducing colorectal cancer (CRC) incidence and enhancing patient outcomes. In this study, we focused on three genes, AQP8, GUCA2B, and SPIB, which exhibit high coexpression and play crucial roles in suppressing early-stage CRC. Our objective was to identify key miRNAs that can mitigate CRC tumorigenesis and modulate the coexpression network involving these genes. We conducted a comprehensive analysis using large-scale tissue mRNA data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus to validate the coexpression of AQP8, GUCA2B, and SPIB, and to assess their diagnostic and prognostic significance in CRC. The mRNA-miRNA interactions were examined using MiRNet and the Encyclopedia of RNA Interactomes. Furthermore, using various molecular techniques, we conducted miRNA inhibitor transfection experiments in HCT116 cells to evaluate their effects on cell growth, migration, and gene/protein expression. Our findings revealed that, compared with normal tissues, AQP8, GUCA2B, and SPIB exhibited high coexpression and were downregulated in CRC, particularly during tumorigenesis. OncoMirs, hsa-miR-182-5p, and hsa-miR-27a-3p, were predicted to regulate these genes. MiRNA inhibition experiments in HCT116 cells demonstrated the inhibitory effects of miR-27a-3p and miR-182-5p on GUCA2B mRNA and protein expression. These miRNAs promoted the proliferation of CRC cells, possibly through their involvement in the GUCA2B-GUCY2C axis, which is known to promote tumor growth. While the expressions of AQP8 and SPIB were barely detectable, their regulatory relationship with hsa-miR-182-5p remained inconclusive. Our study confirms that hsa-miR-27a-3p and hsa-miR-182-5p are oncomiRs in CRC. These miRNAs may contribute to GUCY2C dysregulation by downregulating GUCA2B, which encodes uroguanylin. Consequently, hsa-miR-182-5p and hsa-miR-27a-3p show promise as potential targets for early intervention and treatment in the early stages of CRC.

16.
Aging Med (Milton) ; 7(1): 90-95, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38571677

ABSTRACT

Aging is an extremely intricate and progressive phenomenon that is implicated in many physiological and pathological conditions. Icariin (ICA) is the main active ingredient of Epimedium and has exhibited multiple bioactivities, such as anti-tumor, neuroprotective, antioxidant, anti-inflammatory, and anti-aging properties. ICA could extend healthspan in both invertebrate and vertebrate models. In this review, the roles of ICA in protection from declined reproductive function, neurodegeneration, osteoporosis, aging intestinal microecology, and senescence of cardiovascular system will be summarized. Furthermore, the underlying mechanisms of ICA-mediated anti-aging effects will be introduced. Finally, we will discuss some key aspects that constrain the usage of ICA in clinical practice and the corresponding strategies to solve these issues.

18.
Sci Rep ; 14(1): 7847, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38570595

ABSTRACT

Gastric cancer is a highly prevalent disease that poses a serious threat to public health. In clinical practice, gastroscopy is frequently used by medical practitioners to screen for gastric cancer. However, the symptoms of gastric cancer at different stages of advancement vary significantly, particularly in the case of early gastric cancer (EGC). The manifestations of EGC are often indistinct, leading to a detection rate of less than 10%. In recent years, researchers have focused on leveraging deep learning algorithms to assist medical professionals in detecting EGC and thereby improve detection rates. To enhance the ability of deep learning to detect EGC and segment lesions in gastroscopic images, an Improved Mask R-CNN (IMR-CNN) model was proposed. This model incorporates a "Bi-directional feature extraction and fusion module" and a "Purification module for feature channel and space" based on the Mask R-CNN (MR-CNN). Our study includes a dataset of 1120 images of EGC for training and validation of the models. The experimental results indicate that the IMR-CNN model outperforms the original MR-CNN model, with Precision, Recall, Accuracy, Specificity and F1-Score values of 92.9%, 95.3%, 93.9%, 92.5% and 94.1%, respectively. Therefore, our proposed IMR-CNN model has superior detection and lesion segmentation capabilities and can effectively aid doctors in diagnosing EGC from gastroscopic images.


Subject(s)
Deep Learning , Stomach Neoplasms , Humans , Gastroscopy , Stomach Neoplasms/diagnostic imaging , Gastroscopes
19.
Br J Haematol ; 204(6): 2351-2364, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613241

ABSTRACT

CD7-targeted chimeric antigen receptor T-cell (CAR-T) therapy has shown promising initial complete remission (CR) rates in patients with refractory or relapsed (r/r) T-cell acute lymphoblastic leukaemia and lymphoblastic lymphoma (T-ALL/LBL). To enhance the remission duration, consolidation with allogeneic haematopoietic stem cell transplantation (allo-HSCT) is considered. Our study delved into the outcomes of 34 patients with r/r T-ALL/LBL who underwent allo-HSCT after achieving CR with autologous CD7 CAR-T therapy. These were compared with 124 consecutive T-ALL/LBL patients who received allo-HSCT in CR following chemotherapy. The study revealed that both the CAR-T and chemotherapy cohorts exhibited comparable 2-year overall survival (OS) (61.9% [95% CI, 44.1-78.1] vs. 67.6% [95% CI, 57.5-76.9], p = 0.210), leukaemia-free survival (LFS) (62.3% [95% CI, 44.6-78.4] vs. 62.0% [95% CI, 51.8-71.7], p = 0.548), non-relapse mortality (NRM) rates (32.0% [95% CI, 19.0-54.0] vs. 25.3% [95% CI, 17.9-35.8], p = 0.288) and relapse incidence rates (8.8% [95% CI, 3.0-26.0] vs. 15.8% [95% CI, 9.8-25.2], p = 0.557). Patients aged ≤14 in the CD7 CAR-T group achieved high 2-year OS and LFS rates of 87.5%. Our study indicates that CD7 CAR-T therapy followed by allo-HSCT is not only effective and safe for r/r T-ALL/LBL patients but also on par with the outcomes of those achieving CR through chemotherapy, without increasing NRM.


Subject(s)
Antigens, CD7 , Hematopoietic Stem Cell Transplantation , Immunotherapy, Adoptive , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Remission Induction , Humans , Male , Female , Hematopoietic Stem Cell Transplantation/methods , Adult , Adolescent , Middle Aged , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/mortality , Young Adult , Child , Recurrence , Transplantation, Homologous , Receptors, Chimeric Antigen/therapeutic use , Treatment Outcome , Child, Preschool , Survival Rate
20.
J Agric Food Chem ; 72(13): 7010-7020, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38529524

ABSTRACT

Cyetpyrafen is a recently developed acaricide. The citrus red mite, Panonychus citri (McGregor), has developed significant resistance to cyetpyrafen. However, the molecular mechanism underlying the cyetpyrafen resistance in P. citri remains unclear. Glutathione S-transferases (GSTs) play a critical role in arthropod pesticide resistance. This study showed that GSTs were potentially related to the resistance of P. citri to cyetpyrafen through synergistic experiments and enzyme activity analysis. An omega-family GST gene, PcGSTO1, was significantly up-regulated in the egg, nymph, and adult stages of the cyetpyrafen-resistant strain. Additionally, silencing of PcGSTO1 significantly increased the mortality of P. citri to cyetpyrafen and recombinant PcGSTO1 demonstrated the ability to metabolize cyetpyrafen. Our results indicated that the overexpression of PcGSTO1 is associated with cyetpyrafen resistance in P. citri, and they also provided valuable information for managing resistance in P. citri.


Subject(s)
Acaricides , Tetranychidae , Animals , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Tetranychidae/genetics , Tetranychidae/metabolism , Acaricides/pharmacology , Acaricides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...