Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 16(3)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36986460

ABSTRACT

Tegoprazan is a novel potassium-competitive acid blocker. This study investigated the effect of drug-drug interaction on the pharmacokinetics and pharmacodynamics of tegoprazan co-administered with amoxicillin and clarithromycin, the first-line therapy for the eradication of Helicobacter pylori, using physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) modeling. The previously reported tegoprazan PBPK/PD model was modified and applied. The clarithromycin PBPK model was developed based on the model provided by the SimCYP® compound library. The amoxicillin model was constructed using the middle-out approach. All of the observed concentration-time profiles were covered well by the predicted profiles with the 5th and 95th percentiles. The mean ratios of predicted to observed PK parameters, including the area under the curve (AUC), maximum plasma drug concentration (Cmax), and clearance, were within the 30% intervals for the developed models. Two-fold ratios of predicted fold-changes of Cmax and AUC from time 0 to 24 h to observed data were satisfied. The predicted PD endpoints, including median intragastric pH and percentage holding rate at pH above 4 or 6 on day 1 and day 7, were close to the corresponding observed data. This investigation allows evaluation of the effects of CYP3A4 perpetrators on tegoprazan PK and PD changes, thus providing clinicians with the rationale for co-administration dosing adjustment.

2.
Transl Clin Pharmacol ; 30(2): 99-111, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35800669

ABSTRACT

Duloxetine and thioctic acid (TA) are standard drugs for treating diabetic neuropathy, a primary complication associated with diabetes. In this study, ultra performance liquid chromatography coupled with tandem mass spectrometry methods was successfully developed and validated for quantifying duloxetine and TA in biological samples. The protein precipitation method was used to extract duloxetine, TA and their internal standards from beagle dog plasma. A Hypersil Gold C18 column (150 × 2.1 mm, 1.9 µm) was used for the experiment. Isocratic elution with 0.1% formic acid in acetonitrile (A) and 0.1% formic acid (B) was used for duloxetine, whereas a gradient elution with 0.03% acetic acid (A) and acetonitrile (B) was used for TA. The validated parameters included linearity, sensitivity, accuracy, precision, selectivity, matrix effect, stability, and recovery under different conditions. The linear ranges of the calibration curves for duloxetine and TA were 5-800 ng/mL and 5-1,000 ng/mL, respectively. An intra- and inter-run precision of ± 15% can be observed in all quality control samples. These methods were successfully used for pharmacokinetics (PKs) studies in beagle dogs to compare PK differences in a fixed-dose combination including duloxetine and TA and co-administration of the 2 drugs.

3.
Pharmaceutics ; 14(6)2022 Jun 18.
Article in English | MEDLINE | ID: mdl-35745870

ABSTRACT

A physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model for tegoprazan and its major metabolite M1 was developed to predict PK and PD profiles under various scenarios. The PBPK model for tegoprazan and M1 was developed and predicted using the SimCYP® simulator and verified using clinical study data obtained after a single administration of tegoprazan. The established PBPK/PD model was used to predict PK profiles after repeated administrations of tegoprazan, postprandial PK profiles, and intragastric pH changes. The predicted tegoprazan and M1 concentration-time profiles fit the observed profiles well. The arithmetic mean ratios (95% confidence intervals) of the predicted to observed values for the area under the curve (AUC0-24 h), maximum plasma drug concentration (Cmax), and clearance (CL) for tegoprazan and M1 were within a 30% interval. Delayed time of maximum concentration (Tmax) and decreased Cmax were predicted in the postprandial PK profiles compared with the fasted state. This PBPK/PD model may be used to predict PK profiles after repeated tegoprazan administrations and to predict differences in physiological factors in the gastrointestinal tract or changes in gastric acid pH after tegoprazan administration.

SELECTION OF CITATIONS
SEARCH DETAIL
...