Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Magn Reson Imaging ; 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38426606

ABSTRACT

BACKGROUND: The National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin scale (mRS) scores have important shortcomings. Amide proton transfer-weighted (APTw) imaging might offer more valuable information in ischemic strokes assessment. PURPOSE: To utilize APTw, apparent diffusion coefficient (ADC), and computed tomography perfusion (CTP) for the assessment of clinical symptom severity and 90-day prognosis in patients diagnosed with ischemic stroke. STUDY TYPE: Prospective. SUBJECTS: 61 patients (mean age 63.2 ± 9.7 years; 46 males, 15 females) with ischemic strokes were included in the study. FIELD STRENGTH/SEQUENCE: 3T/turbo spin echo (TSE) T1 -weighted imaging, T2 -weighted imaging, T2 -fluid attenuated inversion recovery (T2 -FLAIR), diffusion-weighted imaging (DWI), and single-shot TSE APTw imaging. ASSESSMENT: APTw, ADC, and CTP were used to compare patient subgroups and construct a prognostic nomogram model. STATISTICAL TESTS: Kolmogorov-Smirnov test, t-test, Mann-Whitney U test, chi-square test, Pearson correlation analysis, multivariate logistic regression analysis, decision curve analysis (DCA), receiver operating characteristic curves (ROCs). The significance threshold was set at P < 0.05. RESULTS: Correlation analysis revealed that APTw and NIHSS exhibit the highest correlation (r = -0.634, 95% confidence interval [CI] -0.418 to -0.782), surpassing that of ADC and lesion size. Multivariable analysis revealed APTw (odds ratio [OR] 0.905, 95% CI 0.845-0.970), ADC (OR 0.745, 95% CI 0.609-0.911), and infarct core-cerebral blood volume (IC-CBV) (OR 0.547, 95% CI 0.310-0.964) as potential risk factors associated with a poor prognosis. The nomogram model demonstrated the highest predictive efficacy, with an area under the curve (AUC) of 0.960 (95% CI 0.911-0.988), exceeding that of APTw, ADC, and IC-CBV individually. DATA CONCLUSION: The APTw technique holds potential value in categorizing and managing patients with ischemic stroke, offering guidance for the implementation of clinical treatment strategies. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

2.
J Magn Reson Imaging ; 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38284542

ABSTRACT

BACKGROUND: The changes that occur in the gamma-aminobutyric acid (GABA) levels within specific brain regions throughout the day are less clear. PURPOSE: To evaluate the daily fluctuations of GABA levels within the parietal lobe (PL) and anterior cingulate gyrus (ACC) regions and explore their association with melatonin (MT) levels, heart rate (HR), and blood pressure. STUDY TYPE: Prospective. SUBJECTS: 26 healthy young adults (15 males and 11 females aged 22-27 years). FIELD STRENGTH/SEQUENCE: 3.0T, T1-weighted imaging, Mescher-Garwood point resolved spectroscopy (MEGA-PRESS) sequence. ASSESSMENT: The acquired GABA signal contained the overlapping signals of macromolecules and homocarnosine, hence expressed as GABA+. The creatine (Cr) signal was applied as an endogenous reference. The GABA+, GABA+/Cr were measured at six different time points (1:00, 5:00, 9:00, 13:00, 17:00, and 21:00 hours) using MEGA-PRESS. The blood pressure, HR and sputum MT levels, were also acquired. STATISTICAL TESTS: The one-way repeated-measures analysis of variance (ANOVA) was used to evaluate the GABA, blood pressure, HR, and MT levels throughout the day. A general linear model was used to find the correlation between GABA and blood pressure, HR, and MT. P < 0.05 was statistically significant. RESULTS: Significant variations in GABA+/Cr and GABA+ levels were observed throughout the day within the PL region. The lowest levels were recorded at 9:00 hour (GABA+/Cr: 0.100 ± 0.003,GABA+:1.877 ± 0.051 i.u) and the highest levels were recorded at 21:00 hour (GABA+/Cr: 0.115 ± 0.003, GABA+:2.122 ± 0.052 i.u). The MT levels were positively correlated with GABA+/Cr (r = 0.301) and GABA+ (r = 0.312) within the ACC region. DATA CONCLUSION: GABA+/Cr and GABA+ in ACC are positively correlated with MT. GABA levels in the PL have diurnal differences. These findings may indicate that the body's GABA level change in response to the light-dark cycle. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 2.

3.
Fungal Genet Biol ; 171: 103865, 2024 03.
Article in English | MEDLINE | ID: mdl-38246260

ABSTRACT

As a prevalent pathogenic fungus, Aspergillus westerdijkiae poses a threat to both food safety and human health. The fungal growth, conidia production and ochratoxin A (OTA) in A. weterdijkiae are regulated by many factors especially transcription factors. In this study, a transcription factor AwSclB in A. westerdijkiae was identified and its function in asexual sporulation and OTA biosynthesis was investigated. In addition, the effect of light control on AwSclB regulation was also tested. The deletion of AwSclB gene could reduce conidia production by down-regulation of conidia genes and increase OTA biosynthesis by up-regulation of cluster genes, regardless under light or dark conditions. It is worth to note that the inhibitory effect of light on OTA biosynthesis was reversed by the knockout of AwSclB gene. The yeast one-hybrid assay indicated that AwSclB could interact with the promoters of BrlA, ConJ and OtaR1 genes. This result suggests that AwSclB in A. westerdijkiae can directly regulate asexual conidia formation by activating the central developmental pathway BrlA-AbaA-WetA through up-regulating the expression of AwBrlA, and promote the light response of the strain by activating ConJ. However, AwSclB itself is unable to respond to light regulation. This finding will deepen our understanding of the molecular regulation of A. westerdijkiae development and secondary metabolism, and provide potential targets for the development of new fungicides.


Subject(s)
Aspergillus , Transcription Factors , Humans , Secondary Metabolism/genetics , Aspergillus/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/genetics
4.
Skin Res Technol ; 29(7): e13393, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37522498

ABSTRACT

BACKGROUND AND AIM: No previous study investigated the anatomical changes of the scalp and hair follicles between tertiary androgenetic alopecia and severe alopecia areata using high-resolution magnetic resonance imaging (HR-MRI). This study aimed to explore the value of HR-MRI in assessing alopecia. MATERIALS AND METHODS: Forty-eight people were included in this study. The imaging indicators of the vertex and occipital scalp were recorded and compared. The logistic regression model was developed for the indicators that differed between tertiary androgenetic alopecia and severe alopecia areata. The receiver-operating characteristic (ROC) curve was used to assess the diagnostic efficacy of the model for tertiary androgenetic alopecia and severe alopecia areata. RESULTS: At the vertex, the thickness of the subcutaneous tissue layer, follicle depth, relative follicle depth, total number of follicles within a 2-cm distance, and number of strands reaching the middle and upper third of the subcutaneous fat layer within a 2-cm distance were statistically different between patients with tertiary androgenetic alopecia, those with severe alopecia areata, and healthy volunteers (p < 0.05). The logistic regression model suggested that the subcutaneous tissue layer thickness was important in discriminating tertiary androgenetic alopecia from severe alopecia areata. The ROC curve showed that the area under the curve, sensitivity, specificity, and best cutoff values of the subcutaneous tissue layer were 0.886, 94.4%, 70%, and 4.31 mm, respectively. CONCLUSIONS: HR-MRI can observe the changes in anatomical structures of the scalp and hair follicles in patients with alopecia. HR-MRI can be applied to the differential diagnosis of tertiary androgenetic alopecia and severe alopecia areata.


Subject(s)
Alopecia Areata , Humans , Alopecia Areata/diagnostic imaging , Alopecia Areata/pathology , Diagnosis, Differential , Alopecia/diagnostic imaging , Alopecia/pathology , Hair Follicle/diagnostic imaging , Hair Follicle/pathology , Scalp/diagnostic imaging , Scalp/pathology , Magnetic Resonance Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...