Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906993

ABSTRACT

Moiré superlattices have emerged as a new platform for studying strongly correlated quantum phenomena, but these systems have been largely limited to van der Waals layer two-dimensional materials. Here we introduce moiré superlattices leveraging ultrathin, ligand-free halide perovskites, facilitated by ionic interactions. Square moiré superlattices with varying periodic lengths are clearly visualized through high-resolution transmission electron microscopy. Twist-angle-dependent transient photoluminescence microscopy and electrical characterizations indicate the emergence of localized bright excitons and trapped charge carriers near a twist angle of ~10°. The localized excitons are accompanied by enhanced exciton emission, attributed to an increased oscillator strength by a theoretically predicted flat band. This research showcases the promise of two-dimensional perovskites as unique room-temperature moiré materials.

2.
Precis Chem ; 1(7): 443-451, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37771515

ABSTRACT

Photoinduced interfacial charge transfer plays a critical role in energy conversion involving van der Waals (vdW) heterostructures constructed of inorganic nanostructures and organic materials. However, the effect of molecular stacking configurations on charge transfer dynamics is less understood. In this study, we demonstrated the tunability of interfacial charge separation in a type-II heterojunction between monolayer (ML) WS2 and an organic semiconducting molecule [2-(3″',4'-dimethyl-[2,2':5',2':5″,2″'-quaterthiophen]-5-yl)ethan-1-ammonium halide (4Tm)] by rational design of relative stacking configurations. The assembly between ML-WS2 and the 4Tm molecule forms a face-to-face stacking when 4Tm molecules are in a self-aggregation state. In contrast, a face-to-edge stacking is observed when 4Tm molecule is incorporated into a 2D organic-inorganic hybrid perovskite lattice. The face-to-face stacking was proved to be more favorable for hole transfer from WS2 to 4Tm and led to interlayer excitons (IEs) emission. Transient absorption measurements show that the hole transfer occurs on a time scale of 150 fs. On the other hand, the face-to-edge stacking resulted in much slower hole transfer without formation of IEs. This inefficient hole transfer occurs on a similar time scale as A exciton recombination in WS2, leading to the formation of negative trions. These investigations offer important fundamental insights into the charge transfer processes at organic-inorganic interfaces.

3.
Nat Commun ; 14(1): 397, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36693860

ABSTRACT

Electroluminescence efficiencies and stabilities of quasi-two-dimensional halide perovskites are restricted by the formation of multiple-quantum-well structures with broad and uncontrollable phase distributions. Here, we report a ligand design strategy to substantially suppress diffusion-limited phase disproportionation, thereby enabling better phase control. We demonstrate that extending the π-conjugation length and increasing the cross-sectional area of the ligand enables perovskite thin films with dramatically suppressed ion transport, narrowed phase distributions, reduced defect densities, and enhanced radiative recombination efficiencies. Consequently, we achieved efficient and stable deep-red light-emitting diodes with a peak external quantum efficiency of 26.3% (average 22.9% among 70 devices and cross-checked) and a half-life of ~220 and 2.8 h under a constant current density of 0.1 and 12 mA/cm2, respectively. Our devices also exhibit wide wavelength tunability and improved spectral and phase stability compared with existing perovskite light-emitting diodes. These discoveries provide critical insights into the molecular design and crystallization kinetics of low-dimensional perovskite semiconductors for light-emitting devices.

4.
Angew Chem Int Ed Engl ; 61(49): e202213840, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36219546

ABSTRACT

Topochemical polymerizations hold the promise of producing high molecular weight and stereoregular single crystalline polymers by first aligning monomers before polymerization. However, monomer modifications often alter the crystal packing and result in non-reactive polymorphs. Here, we report a systematic study on the side chain functionalization of the bis(indandione) derivative system that can be polymerized under visible light. Precisely engineered side chains help organize the monomer crystals in a one-dimensional fashion to maintain the topochemical reactivity. By optimizing the side chain length and end group of monomers, the elastic modulus of the resulting polymer single crystals can also be greatly enhanced. Lastly, using ultrasonication, insoluble polymer single crystals can be processed into free-standing and robust polymer thin films. This work provides new insights on the molecular design of topochemical reactions and paves the way for future applications of this fascinating family of materials.

5.
J Am Chem Soc ; 144(36): 16588-16597, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-35994519

ABSTRACT

Closed-loop circular utilization of plastics is of manifold significance, yet energy-intensive and poorly selective scission of the ubiquitous carbon-carbon (C-C) bonds in contemporary commercial polymers pose tremendous challenges to envisioned recycling and upcycling scenarios. Here, we demonstrate a topochemical approach for creating elongated C-C bonds with a bond length of 1.57∼1.63 Å between repeating units in the solid state with decreased bond dissociation energies. Elongated bonds were introduced between the repeating units of 12 distinct polymers from three classes. In all cases, the materials exhibit rapid depolymerization via breakage of the elongated bond within a desirable temperature range (140∼260 °C) while otherwise remaining remarkably stable under harsh conditions. Furthermore, the topochemically prepared polymers are processable and 3D-printable while maintaining a high depolymerization yield and tunable mechanical properties. These results suggest that the crystalline polymers synthesized from simple photochemistry and without expensive catalysts are promising for practical applications with complete materials' circularity.

6.
Chem Commun (Camb) ; 57(87): 11469-11472, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34652357

ABSTRACT

A selenophene-containing conjugated organic ligand, 2-(4'-methyl-5'-(5-(3-methylthiophen-2-yl)selenophen-2-yl)-[2,2'-bithiophen]-5-yl)ethan-1-aminium (STm), was synthesized and incorporated into a Sn(II)-based two-dimensional perovskite, (STm)2SnI4. The band offset between the perovskite and ligand can be fine-tuned by introducing the STm ligand. Both field-effect transistor and light-emitting diode devices based on (STm)2SnI4 films exhibit high performance and enhanced operational stability.

7.
J Am Chem Soc ; 143(37): 15215-15223, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34516736

ABSTRACT

Controlling grain growth is of great importance in maximizing the charge carrier transport for polycrystalline thin-film electronic devices. The thin-film growth of halide perovskite materials has been manipulated via a number of approaches including solvent engineering, composition engineering, and post-treatment processes. However, none of these methods lead to large-scale atomically flat thin films with extremely large grain size and high charge carrier mobility. Here, we demonstrate a novel π-conjugated ligand design approach for controlling the thin-film nucleation and growth kinetics in two-dimensional (2D) halide perovskites. By extending the π-conjugation and increasing the planarity of the semiconducting ligand, nucleation density can be decreased by more than 5 orders of magnitude. As a result, wafer-scale 2D perovskite thin films with highly ordered crystalline structures and extremely large grain size are readily obtained. We demonstrate high-performance field-effect transistors with hole mobility approaching 10 cm2 V-1 s-1 with ON/OFF current ratios of ∼106 and excellent stability and reproducibility. Our modeling analysis further confirms the origin of enhanced charge transport and field and temperature dependence of the observed mobility, which allows for clear deciphering of the structure-property relationships in these nascent 2D semiconductor systems.

8.
ACS Nano ; 15(4): 6316-6325, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33709710

ABSTRACT

Two-dimensional perovskites that could be regarded as natural organic-inorganic hybrid quantum wells (HQWs) are promising for light-emitting diode (LED) applications. High photoluminescence quantum efficiencies (approaching 80%) and extremely narrow emission bandwidth (less than 20 nm) have been demonstrated in their single crystals; however, a reliable electrically driven LED device has not been realized owing to inefficient charge injection and extremely poor stability. Furthermore, the use of toxic lead raises concerns. Here, we report Sn(II)-based organic-perovskite HQWs employing molecularly tailored organic semiconducting barrier layers for efficient and stable LEDs. Utilizing femtosecond transient absorption spectroscopy, we demonstrate the energy transfer from organic barrier to inorganic perovskite emitter occurs faster than the intramolecular charge transfer in the organic layer. Consequently, this process allows efficient conversion of lower-energy emission associated with the organic layer into higher-energy emission from the perovskite layer. This greatly broadened the candidate pool for the organic layer. Incorporating a bulky small bandgap organic barrier in the HQW, charge transport is enhanced and ion migration is greatly suppressed. We demonstrate a HQW-LED device with pure red emission, a maximum luminance of 3466 cd m-2, a peak external quantum efficiency up to 3.33%, and an operational stability of over 150 h, which are significantly better than previously reported lead-free perovskite LEDs.

9.
J Am Chem Soc ; 141(39): 15577-15585, 2019 Oct 02.
Article in English | MEDLINE | ID: mdl-31525969

ABSTRACT

Sn(II)-based halide perovskite semiconductor materials are promising for a variety of electronics and optoelectronics applications but suffer from poor intrinsic materials stability. Here, we report the synthesis and characterization of a stable Sn (II)-based two-dimensional perovskite featuring a π-conjugated oligothiophene ligand, namely (4Tm)2SnI4, where 4Tm is 2-(3″',4'-dimethyl-[2,2':5',2″:5″,2″'-quaterthiophen]-5-yl)ethan-1-ammonium. The conjugated ligands facilitate formation of micrometer-size large grains, improve charge injections, and stabilize the inorganic perovskite layers. Thin film field-effect transistors based on (4Tm)2SnI4 exhibit enhanced hole mobility up to 2.32 cm2 V-1 s-1 and dramatically improved stability over the previous benchmark material (PEA)2SnI4. Stabilization mechanisms were investigated via single-crystal structure analysis as well as density functional theory calculations. It was found that the large conjugated organic layers not only serve as thick and dense barriers for moisture and oxygen but also increase the crystal formation energy via strong intermolecular interactions. This work demonstrates the great potential of molecular engineering for organic-inorganic hybrid perovskite materials toward applications in high-performance electronics and optoelectronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...