Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38948697

ABSTRACT

Natural selection on complex traits is difficult to study in part due to the ascertainment inherent to genome-wide association studies (GWAS). The power to detect a trait-associated variant in GWAS is a function of frequency and effect size - but for traits under selection, the effect size of a variant determines the strength of selection against it, constraining its frequency. To account for GWAS ascertainment, we propose studying the joint distribution of allele frequencies across populations, conditional on the frequencies in the GWAS cohort. Before considering these conditional frequency spectra, we first characterized the impact of selection and non-equilibrium demography on allele frequency dynamics forwards and backwards in time. We then used these results to understand conditional frequency spectra under realistic human demography. Finally, we investigated empirical conditional frequency spectra for GWAS variants associated with 106 complex traits, finding compelling evidence for either stabilizing or purifying selection. Our results provide insight into polygenic score portability and other properties of variants ascertained with GWAS, highlighting the utility of conditional frequency spectra.

2.
Elife ; 132024 Jan 30.
Article in English | MEDLINE | ID: mdl-38288729

ABSTRACT

Ancient DNA research in the past decade has revealed that European population structure changed dramatically in the prehistoric period (14,000-3000 years before present, YBP), reflecting the widespread introduction of Neolithic farmer and Bronze Age Steppe ancestries. However, little is known about how population structure changed from the historical period onward (3000 YBP - present). To address this, we collected whole genomes from 204 individuals from Europe and the Mediterranean, many of which are the first historical period genomes from their region (e.g. Armenia and France). We found that most regions show remarkable inter-individual heterogeneity. At least 7% of historical individuals carry ancestry uncommon in the region where they were sampled, some indicating cross-Mediterranean contacts. Despite this high level of mobility, overall population structure across western Eurasia is relatively stable through the historical period up to the present, mirroring geography. We show that, under standard population genetics models with local panmixia, the observed level of dispersal would lead to a collapse of population structure. Persistent population structure thus suggests a lower effective migration rate than indicated by the observed dispersal. We hypothesize that this phenomenon can be explained by extensive transient dispersal arising from drastically improved transportation networks and the Roman Empire's mobilization of people for trade, labor, and military. This work highlights the utility of ancient DNA in elucidating finer scale human population dynamics in recent history.


Subject(s)
DNA, Ancient , Genome, Human , Humans , Europe , France , Genetics, Population , Population Dynamics , Human Migration
3.
Nat Ecol Evol ; 7(9): 1515-1524, 2023 09.
Article in English | MEDLINE | ID: mdl-37592021

ABSTRACT

The Iron Age was a dynamic period in central Mediterranean history, with the expansion of Greek and Phoenician colonies and the growth of Carthage into the dominant maritime power of the Mediterranean. These events were facilitated by the ease of long-distance travel following major advances in seafaring. We know from the archaeological record that trade goods and materials were moving across great distances in unprecedented quantities, but it is unclear how these patterns correlate with human mobility. Here, to investigate population mobility and interactions directly, we sequenced the genomes of 30 ancient individuals from coastal cities around the central Mediterranean, in Tunisia, Sardinia and central Italy. We observe a meaningful contribution of autochthonous populations, as well as highly heterogeneous ancestry including many individuals with non-local ancestries from other parts of the Mediterranean region. These results highlight both the role of local populations and the extreme interconnectedness of populations in the Iron Age Mediterranean. By studying these trans-Mediterranean neighbours together, we explore the complex interplay between local continuity and mobility that shaped the Iron Age societies of the central Mediterranean.


Subject(s)
DNA, Ancient , Human Migration , Mediterranean Region , Archaeology , Human Migration/history , Humans , Principal Component Analysis , Human Genetics , DNA, Ancient/analysis , Sequence Analysis, DNA , Burial , Anthropology , History, Ancient
4.
Science ; 377(6613): 1431-1435, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36137047

ABSTRACT

Anthropogenic habitat loss and climate change are reducing species' geographic ranges, increasing extinction risk and losses of species' genetic diversity. Although preserving genetic diversity is key to maintaining species' adaptability, we lack predictive tools and global estimates of genetic diversity loss across ecosystems. We introduce a mathematical framework that bridges biodiversity theory and population genetics to understand the loss of naturally occurring DNA mutations with decreasing habitat. By analyzing genomic variation of 10,095 georeferenced individuals from 20 plant and animal species, we show that genome-wide diversity follows a mutations-area relationship power law with geographic area, which can predict genetic diversity loss from local population extinctions. We estimate that more than 10% of genetic diversity may already be lost for many threatened and nonthreatened species, surpassing the United Nations' post-2020 targets for genetic preservation.


Subject(s)
Anthropogenic Effects , Climate Change , Extinction, Biological , Genetic Variation , Animals , Biodiversity
5.
BMC Genomics ; 21(1): 432, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32586278

ABSTRACT

BACKGROUND: The identification of bona fide microbial taxa in microbiomes derived from ancient and historical samples is complicated by the unavoidable mixture between DNA from ante- and post-mortem microbial colonizers. One possibility to distinguish between these sources of microbial DNA is querying for the presence of age-associated degradation patterns typical of ancient DNA (aDNA). The presence of uracils, resulting from cytosine deamination, has been detected ubiquitously in aDNA retrieved from diverse sources, and used as an authentication criterion. Here, we employ a library preparation method that separates molecules that carry uracils from those that do not for a set of samples that includes Neandertal remains, herbarium specimens and archaeological plant remains. RESULTS: We show that sequencing DNA libraries enriched in molecules carrying uracils effectively amplifies age associated degradation patterns in microbial mixtures of ancient and historical origin. This facilitates the discovery of authentic ancient microbial taxa in cases where degradation patterns are difficult to detect due to large sequence divergence in microbial mixtures. Additionally, the relative enrichment of taxa in the uracil enriched fraction can help to identify bona fide ancient microbial taxa that could be missed using a more targeted approach. CONCLUSIONS: Our experiments show, that in addition to its use in enriching authentic endogenous DNA of organisms of interest, the selective enrichment of damaged DNA molecules can be a valuable tool in the discovery of ancient microbial taxa.


Subject(s)
Bacteria/classification , DNA, Ancient/analysis , Fossils/microbiology , Sequence Analysis, DNA/methods , Uracil/chemistry , Animals , Bacteria/genetics , DNA, Ancient/chemistry , DNA, Bacterial/genetics , Data Mining , Gene Library , Metagenomics , Microbiota , Neanderthals/microbiology , Plants/microbiology
6.
Mol Ecol Resour ; 20(5): 1228-1247, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32306514

ABSTRACT

Species' responses at the genetic level are key to understanding the long-term consequences of anthropogenic global change. Herbaria document such responses, and, with contemporary sampling, provide high-resolution time-series of plant evolutionary change. Characterizing genetic diversity is straightforward for model species with small genomes and a reference sequence. For nonmodel species-with small or large genomes-diversity is traditionally assessed using restriction-enzyme-based sequencing. However, age-related DNA damage and fragmentation preclude the use of this approach for ancient herbarium DNA. Here, we combine reduced-representation sequencing and hybridization-capture to overcome this challenge and efficiently compare contemporary and historical specimens. Specifically, we describe how homemade DNA baits can be produced from reduced-representation libraries of fresh samples, and used to efficiently enrich historical libraries for the same fraction of the genome to produce compatible sets of sequence data from both types of material. Applying this approach to both Arabidopsis thaliana and the nonmodel plant Cardamine bulbifera, we discovered polymorphisms de novo in an unbiased, reference-free manner. We show that the recovered genetic variation recapitulates known genetic diversity in A. thaliana, and recovers geographical origin in both species and over time, independent of bait diversity. Hence, our method enables fast, cost-efficient, large-scale integration of contemporary and historical specimens for assessment of genome-wide genetic trends over time, independent of genome size and presence of a reference genome.


Subject(s)
DNA, Plant/genetics , Genetics, Population , Genomics , Plants/genetics , Arabidopsis , Cardamine , Nucleic Acid Hybridization , Sequence Analysis, DNA
7.
Nat Ecol Evol ; 3(7): 1093-1101, 2019 07.
Article in English | MEDLINE | ID: mdl-31235927

ABSTRACT

Potato, one of the most important staple crops, originates from the highlands of the equatorial Andes. There, potatoes propagate vegetatively via tubers under short days, constant throughout the year. After their introduction to Europe in the sixteenth century, potatoes adapted to a shorter growing season and to tuber formation under long days. Here, we traced the demographic and adaptive history of potato introduction to Europe. To this end, we sequenced 88 individuals that comprise landraces, modern cultivars and historical herbarium samples, including specimens collected by Darwin during the voyage of the Beagle. Our findings show that European potatoes collected during the period 1650-1750 were closely related to Andean landraces. After their introduction to Europe, potatoes admixed with Chilean genotypes. We identified candidate genes putatively involved in long-day pre-adaptation, and showed that the 1650-1750 European individuals were not long-day adapted through previously described allelic variants of the CYCLING DOF FACTOR1 gene. Such allelic variants were detected in Europe during the nineteenth century. Our study highlights the power of combining contemporary and historical genomes to understand the complex evolutionary history of crop adaptation to new environments.


Subject(s)
Solanum tuberosum , Acclimatization , Animals , Dogs , Europe , Genotype , Plant Tubers
8.
BMC Bioinformatics ; 19(1): 122, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29618319

ABSTRACT

BACKGROUND: Intraspecific variation in ploidy occurs in a wide range of species including pathogenic and nonpathogenic eukaryotes such as yeasts and oomycetes. Ploidy can be inferred indirectly - without measuring DNA content - from experiments using next-generation sequencing (NGS). We present nQuire, a statistical framework that distinguishes between diploids, triploids and tetraploids using NGS. The command-line tool models the distribution of base frequencies at variable sites using a Gaussian Mixture Model, and uses maximum likelihood to select the most plausible ploidy model. nQuire handles large genomes at high coverage efficiently and uses standard input file formats. RESULTS: We demonstrate the utility of nQuire analyzing individual samples of the pathogenic oomycete Phytophthora infestans and the Baker's yeast Saccharomyces cerevisiae. Using these organisms we show the dependence between reliability of the ploidy assignment and sequencing depth. Additionally, we employ normalized maximized log- likelihoods generated by nQuire to ascertain ploidy level in a population of samples with ploidy heterogeneity. Using these normalized values we cluster samples in three dimensions using multivariate Gaussian mixtures. The cluster assignments retrieved from a S. cerevisiae population recovered the true ploidy level in over 96% of samples. Finally, we show that nQuire can be used regionally to identify chromosomal aneuploidies. CONCLUSIONS: nQuire provides a statistical framework to study organisms with intraspecific variation in ploidy. nQuire is likely to be useful in epidemiological studies of pathogens, artificial selection experiments, and for historical or ancient samples where intact nuclei are not preserved. It is implemented as a stand-alone Linux command line tool in the C programming language and is available at https://github.com/clwgg/nQuire under the MIT license.


Subject(s)
Genome, Fungal , High-Throughput Nucleotide Sequencing/methods , Ploidies , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA/methods , Software
9.
Annu Rev Genomics Hum Genet ; 18: 321-356, 2017 08 31.
Article in English | MEDLINE | ID: mdl-28460196

ABSTRACT

Microbial archaeology is flourishing in the era of high-throughput sequencing, revealing the agents behind devastating historical plagues, identifying the cryptic movements of pathogens in prehistory, and reconstructing the ancestral microbiota of humans. Here, we introduce the fundamental concepts and theoretical framework of the discipline, then discuss applied methodologies for pathogen identification and microbiome characterization from archaeological samples. We give special attention to the process of identifying, validating, and authenticating ancient microbes using high-throughput DNA sequencing data. Finally, we outline standards and precautions to guide future research in the field.


Subject(s)
Archaea/isolation & purification , Bacteria/isolation & purification , DNA, Ancient/analysis , Metagenomics/methods , Microbiota/genetics , Sequence Analysis, DNA/methods , Archaea/genetics , Archaeology/methods , Bacteria/genetics , Genome, Archaeal , Genome, Bacterial , Humans
10.
Science ; 356(6338): 605-608, 2017 May 12.
Article in English | MEDLINE | ID: mdl-28450384

ABSTRACT

Although a rich record of Pleistocene human-associated archaeological assemblages exists, the scarcity of hominin fossils often impedes the understanding of which hominins occupied a site. Using targeted enrichment of mitochondrial DNA, we show that cave sediments represent a rich source of ancient mammalian DNA that often includes traces of hominin DNA, even at sites and in layers where no hominin remains have been discovered. By automation-assisted screening of numerous sediment samples, we detected Neandertal DNA in eight archaeological layers from four caves in Eurasia. In Denisova Cave, we retrieved Denisovan DNA in a Middle Pleistocene layer near the bottom of the stratigraphy. Our work opens the possibility of detecting the presence of hominin groups at sites and in areas where no skeletal remains are found.


Subject(s)
DNA, Ancient/isolation & purification , DNA, Mitochondrial/isolation & purification , Hominidae/classification , Hominidae/genetics , Animals , Caves , DNA, Ancient/analysis , DNA, Mitochondrial/analysis , Europe , Fossils , Geologic Sediments/chemistry , Sequence Analysis, DNA
11.
R Soc Open Sci ; 3(6): 160239, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27429780

ABSTRACT

Herbaria archive a record of changes of worldwide plant biodiversity harbouring millions of specimens that contain DNA suitable for genome sequencing. To profit from this resource, it is fundamental to understand in detail the process of DNA degradation in herbarium specimens. We investigated patterns of DNA fragmentation and nucleotide misincorporation by analysing 86 herbarium samples spanning the last 300 years using Illumina shotgun sequencing. We found an exponential decay relationship between DNA fragmentation and time, and estimated a per nucleotide fragmentation rate of 1.66 × 10(-4) per year, which is six times faster than the rate estimated for ancient bones. Additionally, we found that strand breaks occur specially before purines, and that depurination-driven DNA breakage occurs constantly through time and can to a great extent explain decreasing fragment length over time. Similar to what has been found analysing ancient DNA from bones, we found a strong correlation between the deamination-driven accumulation of cytosine to thymine substitutions and time, which reinforces the importance of substitution patterns to authenticate the ancient/historical nature of DNA fragments. Accurate estimations of DNA degradation through time will allow informed decisions about laboratory and computational procedures to take advantage of the vast collection of worldwide herbarium specimens.

12.
Elife ; 42015 Nov 03.
Article in English | MEDLINE | ID: mdl-26525598

ABSTRACT

Contamination with exogenous DNA is a constant hazard to ancient DNA studies, since their validity greatly depend on the ancient origin of the retrieved sequences. Since contamination occurs sporadically, it is fundamental to show positive evidence for the authenticity of ancient DNA sequences even when preventive measures to avoid contamination are implemented. Recently the presence of wheat in the United Kingdom 8000 years before the present has been reported based on an analysis of sedimentary ancient DNA (Smith et al. 2015). Smith et al. did not present any positive evidence for the authenticity of their results due to the small number of sequencing reads that were confidently assigned to wheat. We developed a computational method that compares postmortem damage patterns of a test dataset with bona fide ancient and modern DNA. We applied this test to the putative wheat DNA and find that these reads are most likely not of ancient origin.


Subject(s)
DNA, Plant/genetics , DNA, Plant/isolation & purification , Fossils , Triticum/growth & development , Triticum/genetics , Molecular Biology/methods , Sequence Analysis, DNA , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...