Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Language
Publication year range
1.
Article in English | WPRIM (Western Pacific) | ID: wpr-812487

ABSTRACT

Sheng-Mai-San (SMS), a well-known Chinese medicinal plant formula, is widely used for the treatment of cardiac diseases characterized by deficiency of Qi and Yin syndrome. A mouse chronic intermittent hypoxia (CIH) model was established to mimic the primary clinical features of deficiency of Qi and Yin syndrome. Mice experienced CIH for 28 days (nadir 7% to peak 8% oxygen, 20 min per day), resulting in left ventricle (LV) dysfunction and structure abnormalities. After administration of SMS (0.55, 1.1, and 5.5 g·kg(-1)·d(-1)) for four weeks, improved cardiac function was observed, as indicated by the increase in the ejection fraction from the LV on echocardiography. SMS also preserved the structural integrity of the LV against eccentric hypotrophy, tissue vacuolization, and mitochondrial injury as measured by histology, electron microscopy, and ultrasound assessments. Mechanistically, the antioxidant effects of SMS were demonstrated; SMS was able to suppress mitochondrial apoptosis as indicated by the reduction of several pro-apoptotic factors (Bax, cytochrome c, and cleaved caspase-3) and up-regulation of the anti-apoptosis factor Bcl-2. In conclusion, these results demonstrate that SMS treatment can protect the structure and function of the LV and that the protective effects of this formula are associated with the regulation of the mitochondrial apoptosis pathway.


Subject(s)
Animals , Male , Antioxidants , Pharmacology , Therapeutic Uses , Apoptosis , Cardiomyopathies , Drug Therapy , Caspase 3 , Metabolism , Cytochromes c , Metabolism , Disease Models, Animal , Drug Combinations , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Heart Ventricles , Pathology , Hypoxia , Mice, Inbred ICR , Mitochondria , Metabolism , Myocardium , Pathology , Oxygen , Metabolism , Phytotherapy , Qi , Up-Regulation , Ventricular Dysfunction, Left , Drug Therapy , bcl-2-Associated X Protein , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...