Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Exp Neurol ; 378: 114818, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782352

ABSTRACT

Doxorubicin (DOX) is a highly effective anthracycline antibiotic used to treat a wide variety of cancers including breast cancer, leukemia and lymphoma. Unfortunately, clinical use of DOX is limited due to adverse off-target effects resulting in fatigue, respiratory muscle weakness and dyspnea. The diaphragm is the primary muscle of inspiration and respiratory insufficiency is likely the result of both muscle weakness and neural impairment. However, the contribution of neuropathology to DOX-induced respiratory muscle dysfunction is unclear. We hypothesized that diaphragm weakness following acute DOX exposure is associated with neurotoxicity and that exercise preconditioning is sufficient to improve diaphragm muscle contractility by maintaining neuromuscular integrity. Adult female Sprague-Dawley rats were randomized into four experimental groups: 1) sedentary-saline, 2) sedentary-DOX, 3) exercise-saline or 4) exercise-DOX. Endurance exercise preconditioning consisted of treadmill running for 1 h/day at 30 m/min for 10 days. Twenty-four hours after the last bout of exercise, animals were treated with DOX (20 mg/kg, I.P.) or saline (equal volume). Our results demonstrate that 48-h following DOX administration diaphragm muscle specific force is reduced in sedentary-DOX rats in response to both phrenic nerve and direct diaphragm stimulation. Importantly, endurance exercise preconditioning in DOX-treated rats attenuated the decrease in diaphragm contractile function, reduced neuromuscular transmission failure and altered phrenic nerve morphology. These changes were associated with an exercise-induced reduction in circulating biomarkers of inflammation, nerve injury and reformation. Therefore, the results are consistent with exercise preconditioning as an effective way of reducing respiratory impairment via preservation of phrenic-diaphragm neuromuscular conduction.


Subject(s)
Diaphragm , Doxorubicin , Physical Conditioning, Animal , Rats, Sprague-Dawley , Animals , Diaphragm/drug effects , Diaphragm/innervation , Doxorubicin/toxicity , Female , Rats , Physical Conditioning, Animal/physiology , Antibiotics, Antineoplastic/toxicity , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Phrenic Nerve/drug effects , Muscle Contraction/drug effects , Muscle Contraction/physiology , Neuromuscular Junction/drug effects
2.
bioRxiv ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38293127

ABSTRACT

Limb-Girdle Muscular Dystrophy 2A (LGMD2A) is caused by mutations in the CAPN3 gene encoding Calpain 3, a skeletal-muscle specific, Ca2+-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca2+ homeostasis. Through live-cell Ca2+ measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in Capn3 deficient (C3KO) and wildtype (WT) mice, we determined if loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity. Direct Ca2+ influx measurements revealed loss of Capn3 elicits elevated resting SOCE and increased resting cytosolic Ca2+, supported by high incidence of calcium entry units (CEUs) observed by EM. C3KO and WT mice were subjected to a single bout of treadmill running to elicit SOCE. Within 1HR post-treadmill running, C3KO mice exhibited diminished force production in extensor digitorum longus muscles and a greater decay of Ca2+ transients in flexor digitorum brevis muscle fibers during repetitive stimulation. Striking evidence for impaired exercise-induced SOCE activation in C3KO mice included poor colocalization of key SOCE proteins, stromal-interacting molecule 1 (STIM1) and ORAI1, combined with disappearance of CEUs in C3KO muscles. These results demonstrate that Calpain 3 is a key regulator of SOCE in skeletal muscle and identify SOCE dysregulation as a contributing factor to LGMD2A pathology.

3.
J Physiol ; 602(8): 1519-1549, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38010626

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.

4.
J Gen Physiol ; 154(9)2022 09 05.
Article in English | MEDLINE | ID: mdl-34910094

ABSTRACT

The inhibitor of store-operated Ca2+ entry (SOCE) BTP2 was reported to inhibit ryanodine receptor Ca2+ leak and electrically evoked Ca2+ release from the sarcoplasmic reticulum when introduced into mechanically skinned muscle fibers. However, it is unclear how effects of intracellular application of a highly lipophilic drug like BTP2 on Ca2+ release during excitation-contraction (EC) coupling compare with extracellular exposure in intact muscle fibers. Here, we address this question by quantifying the effect of short- and long-term exposure to 10 and 20 µM BTP2 on the magnitude and kinetics of electrically evoked Ca2+ release in intact mouse flexor digitorum brevis muscle fibers. Our results demonstrate that neither the magnitude nor the kinetics of electrically evoked Ca2+ release evoked during repetitive electrical stimulation were altered by brief exposure (2 min) to either BTP2 concentration. However, BTP2 did reduce the magnitude of electrically evoked Ca2+ release in intact fibers when applied extracellularly for a prolonged period of time (30 min at 10 µM or 10 min at 20 µM), consistent with slow diffusion of the lipophilic drug across the plasma membrane. Together, these results indicate that the time course and impact of BTP2 on Ca2+ release during EC coupling in skeletal muscle depends strongly on whether the drug is applied intracellularly or extracellularly. Further, these results demonstrate that electrically evoked Ca2+ release in intact muscle fibers is unaltered by extracellular application of 10 µM BTP2 for <25 min, validating this use to assess the role of SOCE in the absence of an effect on EC coupling.


Subject(s)
Calcium , Sarcoplasmic Reticulum , Animals , Calcium/metabolism , Calcium Signaling , Mice , Muscle Contraction , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
5.
J Clin Invest ; 130(3): 1271-1287, 2020 03 02.
Article in English | MEDLINE | ID: mdl-32039917

ABSTRACT

Paucity of the survival motor neuron (SMN) protein triggers the oft-fatal infantile-onset motor neuron disorder, spinal muscular atrophy (SMA). Augmenting the protein is one means of treating SMA and recently led to FDA approval of an intrathecally delivered SMN-enhancing oligonucleotide currently in use. Notwithstanding the advent of this and other therapies for SMA, it is unclear whether the paralysis associated with the disease derives solely from dysfunctional motor neurons that may be efficiently targeted by restricted delivery of SMN-enhancing agents to the nervous system, or stems from broader defects of the motor unit, arguing for systemic SMN repletion. We investigated the disease-contributing effects of low SMN in one relevant peripheral organ - skeletal muscle - by selectively depleting the protein in only this tissue. We found that muscle deprived of SMN was profoundly damaged. Although a disease phenotype was not immediately obvious, persistent low levels of the protein eventually resulted in muscle fiber defects, neuromuscular junction abnormalities, compromised motor performance, and premature death. Importantly, restoring SMN after the onset of muscle pathology reversed disease. Our results provide the most compelling evidence yet for a direct contributing role of muscle in SMA and argue that an optimal therapy for the disease must be designed to treat this aspect of the dysfunctional motor unit.


Subject(s)
Motor Neurons/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy, Spinal/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Animals , Disease Models, Animal , Mice , Mice, Transgenic , Motor Neurons/pathology , Muscle, Skeletal/pathology , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Survival of Motor Neuron 1 Protein/genetics
6.
FASEB J ; 33(12): 13515-13526, 2019 12.
Article in English | MEDLINE | ID: mdl-31581846

ABSTRACT

In utero overnutrition can predispose offspring to metabolic disease. Although the mechanisms are unclear, increased oxidative stress accelerating cellular aging has been shown to play a role. Mitochondria are the main site of reactive oxygen species (ROS) production in most cell types. Levels of ROS and the risk for oxidative damage are dictated by the balance between ROS production and antioxidant defense mechanisms. Originally considered as toxic species, physiologic levels of ROS are now known to be essential cell signaling molecules. Using a model of maternal overnutrition in C57BL6N mice, we investigate the mechanisms involved in the development of insulin resistance (IR) in muscle. In red and white gastrocnemius muscles of offspring, we are the first to report characteristics of oxidative phosphorylation, H2O2 production, activity of mitoflashes, and electron transport chain supercomplex formation. Results demonstrate altered mitochondrial function with reduced response to glucose in offspring of mice fed a high-fat and high-sucrose diet, increases in mitochondrial leak respiration, and a reduction in ROS production in red gastrocnemius in response to palmitoyl carnitine. We also demonstrate differences in supercomplex formation between red and white gastrocnemius, which may be integral to fiber-type specialization. We conclude that in this model of maternal overnutrition, mitochondrial alterations occur before the development of IR.-McMurray, F., MacFarlane, M., Kim, K., Patten, D. A., Wei-LaPierre, L., Fullerton, M. D., Harper, M. E. Maternal diet-induced obesity alters muscle mitochondrial function in offspring without changing insulin sensitivity.


Subject(s)
Diet, High-Fat/adverse effects , Glucose Intolerance/pathology , Insulin Resistance , Mitochondria, Muscle/pathology , Obesity/physiopathology , Oxidative Stress , Animals , Female , Glucose Intolerance/metabolism , Male , Maternal Nutritional Physiological Phenomena , Mice , Mice, Inbred C57BL , Mitochondria, Muscle/metabolism , Oxidative Phosphorylation , Reactive Oxygen Species/metabolism
7.
Hum Mol Genet ; 28(18): 3024-3036, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31107960

ABSTRACT

Ryanodine receptor type I (RYR1)-related myopathies (RYR1 RM) are a clinically and histopathologically heterogeneous group of conditions that represent the most common subtype of childhood onset non-dystrophic muscle disorders. There are no treatments for this severe group of diseases. A major barrier to therapy development is the lack of an animal model that mirrors the clinical severity of pediatric cases of the disease. To address this, we used CRISPR/Cas9 gene editing to generate a novel recessive mouse model of RYR1 RM. This mouse (Ryr1TM/Indel) possesses a patient-relevant point mutation (T4706M) engineered into 1 allele and a 16 base pair frameshift deletion engineered into the second allele. Ryr1TM/Indel mice exhibit an overt phenotype beginning at 14 days of age that consists of reduced body/muscle mass and myofibre hypotrophy. Ryr1TM/Indel mice become progressively inactive from that point onward and die at a median age of 42 days. Histopathological assessment shows myofibre hypotrophy, increased central nuclei and decreased triad number but no clear evidence of metabolic cores. Biochemical analysis reveals a marked decrease in RYR1 protein levels (20% of normal) as compared to only a 50% decrease in transcript. Functional studies at end stage show significantly reduced electrically evoked Ca2+ release and force production. In summary, Ryr1TM/Indel mice exhibit a post-natal lethal recessive form of RYR1 RM that pheno-copies the severe congenital clinical presentation seen in a subgroup of RYR1 RM children. Thus, Ryr1TM/Indel mice represent a powerful model for both establishing the pathomechanisms of recessive RYR1 RM and pre-clinical testing of therapies for efficacy.


Subject(s)
Genes, Recessive , Genetic Association Studies , Genetic Predisposition to Disease , Muscular Diseases/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Animals , Calcium/metabolism , DNA Mutational Analysis , Disease Models, Animal , Gene Editing , Gene Expression Regulation , Gene Targeting , Genetic Loci , Genotype , INDEL Mutation , Isoflurane/pharmacology , Mice , Mice, Transgenic , Muscle Strength/genetics , Muscle Weakness/genetics , Muscle Weakness/physiopathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiopathology , Muscular Diseases/diagnosis , Muscular Diseases/metabolism , Mutation , Phenotype , Ryanodine Receptor Calcium Release Channel/metabolism , Severity of Illness Index
9.
Arch Biochem Biophys ; 665: 122-131, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30872061

ABSTRACT

Mitochondrial flashes (mitoflashes) are stochastic events in the mitochondrial matrix detected by mitochondrial-targeted cpYFP (mt-cpYFP). Mitoflashes are quantal bursts of reactive oxygen species (ROS) production accompanied by modest matrix alkalinization and depolarization of the mitochondrial membrane potential. Mitoflashes are fundamental events present in a wide range of cell types. To date, the precise mechanisms for mitoflash generation and termination remain elusive. Transient opening of the mitochondrial membrane permeability transition pore (mPTP) during a mitoflash is proposed to account for the mitochondrial membrane potential depolarization. Here, we set out to compare the tissue-specific effects of cyclophilin D (CypD)-deficiency and mitochondrial substrates on mitoflash activity in skeletal and cardiac muscle. In contrast to previous reports, we found that CypD knockout did not alter the mitoflash frequency or other mitoflash properties in acutely isolated cardiac myocytes, skeletal muscle fibers, or isolated mitochondria from skeletal muscle and the heart. However, in skeletal muscle fibers, CypD deficiency resulted in a parallel increase in both activity-dependent mitochondrial Ca2+ uptake and activity-dependent mitoflash activity. Increases in both mitochondrial Ca2+ uptake and mitoflash activity following electrical stimulation were abolished by inhibition of mitochondrial Ca2+ uptake. We also found that mitoflash frequency and amplitude differ greatly between intact skeletal muscle fibers and cardiac myocytes, but that this difference is absent in isolated mitochondria. We propose that this difference may be due, in part, to differences in substrate availability in intact skeletal muscle fibers (primarily glycolytic) and cardiac myocytes (largely oxidative). Overall, we find that CypD does not contribute significantly in mitoflash biogenesis under basal conditions in skeletal and cardiac muscle, but does regulate mitoflash events during muscle activity. In addition, tissue-dependent differences in mitoflash frequency are strongly regulated by mitochondrial substrate availability.


Subject(s)
Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism , Peptidyl-Prolyl Isomerase F/metabolism , Animals , Peptidyl-Prolyl Isomerase F/genetics , Mice, Knockout , Substrate Specificity
10.
Elife ; 62017 06 06.
Article in English | MEDLINE | ID: mdl-28583253

ABSTRACT

Neuromuscular junction degeneration is a prominent aspect of sarcopenia, the age-associated loss of skeletal muscle integrity. Previously, we showed that muscle stem cells activate and contribute to mouse neuromuscular junction regeneration in response to denervation (Liu et al., 2015). Here, we examined gene expression profiles and neuromuscular junction integrity in aged mouse muscles, and unexpectedly found limited denervation despite a high level of degenerated neuromuscular junctions. Instead, degenerated neuromuscular junctions were associated with reduced contribution from muscle stem cells. Indeed, muscle stem cell depletion was sufficient to induce neuromuscular junction degeneration at a younger age. Conversely, prevention of muscle stem cell and derived myonuclei loss was associated with attenuation of age-related neuromuscular junction degeneration, muscle atrophy, and the promotion of aged muscle force generation. Our observations demonstrate that deficiencies in muscle stem cell fate and post-synaptic myogenesis provide a cellular basis for age-related neuromuscular junction degeneration and associated skeletal muscle decline.


Subject(s)
Aging/pathology , Muscle, Skeletal/pathology , Neuromuscular Junction/pathology , Sarcopenia/pathology , Stem Cells/physiology , Animals , Mice
11.
Clin Exp Pharmacol Physiol ; 44(1): 3-12, 2017 01.
Article in English | MEDLINE | ID: mdl-27696487

ABSTRACT

The core skeletal muscle ryanodine receptor (RyR1) calcium release complex extends through three compartments of the muscle fibre, linking the extracellular environment through the cytoplasmic junctional gap to the lumen of the internal sarcoplasmic reticulum (SR) calcium store. The protein complex is essential for skeletal excitation-contraction (EC)-coupling and skeletal muscle function. Its importance is highlighted by perinatal death if any one of the EC-coupling components are missing and by myopathies associated with mutation of any of the proteins. The proteins essential for EC-coupling include the DHPR α1S subunit in the transverse tubule membrane, the DHPR ß1a subunit in the cytosol and the RyR1 ion channel in the SR membrane. The other core proteins are triadin and junctin and calsequestrin, associated mainly with SR. These SR proteins are not essential for survival but exert structural and functional influences that modify the gain of EC-coupling and maintain normal muscle function. This review summarises our current knowledge of the individual protein/protein interactions within the core complex and their overall contribution to EC-coupling. We highlight significant areas that provide a continuing challenge for the field. Additional important components of the Ca2+ release complex, such as FKBP12, calmodulin, S100A1 and Stac3 are identified and reviewed elsewhere.


Subject(s)
Calcium/metabolism , Muscle, Skeletal/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism , Amino Acid Sequence , Animals , Humans , Muscle Proteins/chemistry , Muscle Proteins/genetics , Muscle Proteins/metabolism , Protein Binding/physiology , Protein Structure, Secondary , Ryanodine Receptor Calcium Release Channel/chemistry , Ryanodine Receptor Calcium Release Channel/genetics
12.
Antioxid Redox Signal ; 25(9): 534-49, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27245241

ABSTRACT

SIGNIFICANCE: Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of "mitochondrial flash" activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. RECENT ADVANCES: The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. CRITICAL ISSUES: We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. FUTURE DIRECTIONS: Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534-549.


Subject(s)
Cell Physiological Phenomena , Hydrogen-Ion Concentration , Mitochondria/metabolism , Reactive Oxygen Species/metabolism , Signal Transduction , Animals , Antioxidants/metabolism , Biomarkers , Biosensing Techniques , Humans , Luminescent Proteins/metabolism , Oxidation-Reduction , Oxidative Phosphorylation , Superoxides/metabolism
13.
Elife ; 42015 Aug 27.
Article in English | MEDLINE | ID: mdl-26312504

ABSTRACT

Skeletal muscle maintenance depends on motor innervation at neuromuscular junctions (NMJs). Multiple mechanisms contribute to NMJ repair and maintenance; however muscle stem cells (satellite cells, SCs), are deemed to have little impact on these processes. Therefore, the applicability of SC studies to attenuate muscle loss due to NMJ deterioration as observed in neuromuscular diseases and aging is ambiguous. We employed mice with an inducible Cre, and conditionally expressed DTA to deplete or GFP to track SCs. We found SC depletion exacerbated muscle atrophy and type transitions connected to neuromuscular disruption. Also, elevated fibrosis and further declines in force generation were specific to SC depletion and neuromuscular disruption. Fate analysis revealed SC activity near regenerating NMJs. Moreover, SC depletion aggravated deficits in reinnervation and post-synaptic morphology at regenerating NMJs. Therefore, our results propose a mechanism whereby further NMJ and skeletal muscle decline ensues upon SC depletion and neuromuscular disruption.


Subject(s)
Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Neuromuscular Junction/cytology , Neuromuscular Junction/physiology , Regeneration , Stem Cells/physiology , Animals , Mice, Inbred C57BL
14.
Anesthesiology ; 123(3): 603-17, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26132720

ABSTRACT

BACKGROUND: Mice lacking calsequestrin-1 (CASQ1-null), a Ca-binding protein that modulates the activity of Ca release in the skeletal muscle, exhibit lethal hypermetabolic episodes that resemble malignant hyperthermia in humans when exposed to halothane or heat stress. METHODS: Because oxidative species may play a critical role in malignant hyperthermia crises, we treated CASQ1-null mice with two antioxidants, N-acetylcysteine (NAC, Sigma-Aldrich, Italy; provided ad libitum in drinking water) and (±)-6-hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid (Trolox, Sigma-Aldrich; administered by intraperitoneal injection), before exposure to halothane (2%, 1 h) or heat (41°C, 1 h). RESULTS: NAC and Trolox significantly protected CASQ1-null mice from lethal episodes, with mortality being 79% (n = 14), 25% (n = 16), and 20% (n = 5) during halothane exposure and 86% (n = 21), 29% (n = 21), and 33% (n = 6) during heat stress in untreated, NAC-treated, and Trolox-treated mice, respectively. During heat challenge, an increase in core temperature in CASQ1-null mice (42.3° ± 0.1°C, n=10) was significantly reduced by both NAC and Trolox (40.6° ± 0.3°C, n = 6 and 40.5° ± 0.2°C, n = 6). NAC treatment of CASQ1-null muscles/mice normalized caffeine sensitivity during in vitro contracture tests, Ca transients in single fibers, and significantly reduced the percentage of fibers undergoing rhabdomyolysis (37.6 ± 2.5%, 38/101 fibers in 3 mice; 11.6 ± 1.1%, 21/186 fibers in 5 mice). The protective effect of antioxidant treatment likely resulted from mitigation of oxidative stress, because NAC reduced mitochondrial superoxide production, superoxide dismutase type-1 expression, and 3-nitrotyrosine expression, and increased both reduced glutathione and reduced glutathione/oxidized glutathione ratio. CONCLUSION: These studies provide a deeper understanding of the mechanisms that underlie hyperthermic crises in CASQ1-deficient muscle and demonstrate that antioxidant pretreatment may prevent them.


Subject(s)
Anesthetics, Inhalation/toxicity , Antioxidants/therapeutic use , Calcium-Binding Proteins/deficiency , Death, Sudden/prevention & control , Halothane/toxicity , Hot Temperature/adverse effects , Animals , Calsequestrin , Male , Mice , Mice, Knockout
15.
Skelet Muscle ; 5: 10, 2015.
Article in English | MEDLINE | ID: mdl-26075051

ABSTRACT

BACKGROUND: Mutations in the gene encoding ryanodine receptor type-1 (RYR1), the calcium ion (Ca (2+)) release channel in the sarcoplasmic reticulum (SR) of skeletal muscle, are linked to central core disease (CCD) and malignant hyperthermia (MH) susceptibility. We recently reported that mice lacking the skeletal isoform of calsequestrin (CASQ1-null), the primary Ca (2+) buffer in the SR of skeletal muscle and a modulator of RYR1 activity, exhibit lethal heat- and anesthetic-induced hypermetabolic episodes that resemble MH events in humans. METHODS: We compared ultrastructure, oxidative status, and contractile function in skeletal fibers of extensor digitorum longus (EDL) muscles in wild type (WT) and CASQ1-null mice at different ages (from 4 to 27 months) using structural, biochemical, and functional assays. RESULTS: About 25% of fibers in EDL muscles from CASQ1-null mice of 14 to 27 months of age exhibited large areas of structural disarray (named core-like regions), which were rarely observed in muscle from age-matched WT mice. To determine early events that may lead to the formation of cores, we analyzed EDL muscles from adult mice: at 4 to 6 months of age, CASQ1-null mice (compared to WT) displayed significantly reduced grip strength (40 ± 1 vs. 86 ± 1 mN/gr) and exhibited an increase in the percentage of damaged mitochondria (15.1% vs. 2.6%) and a decrease in average cross-sectional fiber area (approximately 37%) in EDL fibers. Finally, oxidative stress was also significantly increased (25% reduction in ratio between reduced and oxidized glutathione, or GSH/GSSG, and 35% increase in production of mitochondrial superoxide flashes). Providing ad libitum access to N-acetylcysteine in the drinking water for 2 months normalized GSH/GSSG ratio, reduced mitochondrial damage (down to 8.9%), and improved grip strength (from 46 ± 3 to 59 ± 2 mN/gr) in CASQ1-null mice. CONCLUSIONS: Our findings: 1) demonstrate that ablation of CASQ1 leads to enhanced oxidative stress, mitochondrial damage, and the formation of structural cores in skeletal muscle; 2) provide new insights in the pathogenic mechanisms that lead to damage/disappearance of mitochondria in cores; and 3) suggest that antioxidants may provide some therapeutic benefit in reducing mitochondrial damage, limiting the development of cores, and improving muscle function.

16.
J Gen Physiol ; 145(2): 127-53, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25624449

ABSTRACT

We describe a new method for determining the concentration of total Ca in whole skeletal muscle samples ([CaT]WM in units of mmoles/kg wet weight) using the Ca-dependent UV absorbance spectra of the Ca chelator BAPTA (1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid). Muscle tissue was homogenized in a solution containing 0.15 mM BAPTA and 0.5% sodium dodecyl sulfate (to permeabilize membranes and denature proteins) and then centrifuged. The solution volume was adjusted so that BAPTA captured essentially all of the Ca. [CaT]WM was obtained with Beer's law from the absorbance change produced by adding 1 mM EGTA to capture Ca from BAPTA. Results from mouse, rat, and frog muscles were reasonably consistent with results obtained using other methods for estimating total [Ca] in whole muscles and in single muscle fibers. Results with external Ca removed before determining [CaT]WM indicate that most of the Ca was intracellular, indicative of a lack of bound Ca in the extracellular space. In both fast-twitch (extensor digitorum longus, EDL) and slow-twitch (soleus) muscles from mice, [CaT]WM increased approximately linearly with decreasing muscle weight, increasing approximately twofold with a twofold decrease in muscle weight. This suggests that the Ca concentration of smaller muscles might be increased relative to that in larger muscles, thereby increasing the specific force to compensate for the smaller mass. Knocking out the high capacity Ca-binding protein calsequestrin (CSQ) did not significantly reduce [CaT]WM in mouse EDL or soleus muscle. However, in EDL muscles lacking CSQ, muscle weights were significantly lower than in wild-type (WT) muscles and the values of [CaT]WM were, on average, about half the expected WT values, taking into account the above [CaT]WM versus muscle weight relationship. Because greater reductions in [CaT]WM would be predicted in both muscle types, we hypothesize that there is a substantial increase in Ca bound to other sites in the CSQ knockout muscles.


Subject(s)
Calcium/metabolism , Calsequestrin/metabolism , Muscle, Skeletal/metabolism , Animals , Anura , Calcium Chelating Agents/chemistry , Egtazic Acid/analogs & derivatives , Egtazic Acid/chemistry , Mice , Rats , Spectrometry, Fluorescence/methods
17.
Hum Mol Genet ; 23(14): 3706-15, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24556214

ABSTRACT

Muscular dystrophy is a progressive muscle wasting disease that is thought to be initiated by unregulated Ca(2+) influx into myofibers leading to their death. Store-operated Ca(2+) entry (SOCE) through sarcolemmal Ca(2+) selective Orai1 channels in complex with STIM1 in the sarcoplasmic reticulum is one such potential disease mechanism for pathologic Ca(2+) entry. Here, we generated a mouse model of STIM1 overexpression in skeletal muscle to determine whether this type of Ca(2+) entry could induce muscular dystrophy. Myofibers from muscle-specific STIM1 transgenic mice showed a significant increase in SOCE in skeletal muscle, modeling an observed increase in the same current in dystrophic myofibers. Histological and biochemical analysis of STIM1 transgenic mice showed fulminant muscle disease characterized by myofiber necrosis, swollen mitochondria, infiltration of inflammatory cells, enhanced interstitial fibrosis and elevated serum creatine kinase levels. This dystrophic-like disease in STIM1 transgenic mice was abrogated by crossing in a transgene expressing a dominant-negative Orai1 (dnOrai1) mutant. The dnOrai1 transgene also significantly reduced the severity of muscular dystrophy in both mdx (dystrophin mutant mice) and δ-sarcoglycan-deficient (Sgcd(-/-)) mouse models of disease. Hence, Ca(2+) influx across an unstable sarcolemma due to increased activity of a STIM1-Orai1 complex is a disease determinant in muscular dystrophy, and hence, SOCE represents a potential therapeutic target.


Subject(s)
Calcium Channels/metabolism , Calcium/metabolism , Membrane Proteins/metabolism , Muscular Dystrophies/pathology , Neoplasm Proteins/metabolism , Animals , Gene Expression Regulation , Humans , Mice , Mice, Transgenic , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscular Dystrophies/metabolism , Muscular Dystrophy, Animal , ORAI1 Protein , Stromal Interaction Molecule 1
18.
Nat Commun ; 4: 2805, 2013.
Article in English | MEDLINE | ID: mdl-24241282

ABSTRACT

Store-operated Ca²âº entry (SOCE) in skeletal muscle involves signalling between stromal-interacting molecule 1 (STIM1) in the sarcoplasmic reticulum (SR) and Ca²âº selective Orai1 channels in the sarcolemma. Here we generate transgenic mice with muscle-specific expression of dominant-negative Orai1 (dnOrai1) and demonstrate that Orai1-dependent SOCE promotes growth and limits fatigue in adult skeletal muscle. dnOrai1 mice lack SOCE specifically in muscle but are fertile and thrive well into adulthood. Although muscle ultrastructure, excitation-contraction (EC) coupling, fibre type, and expression of other Ca²âº regulatory proteins are unaltered, dnOrai1 mice exhibit reduced body weight, muscle mass and fibre cross-sectional area. Importantly, during intense repetitive activity, dnOrai1 mice display increased susceptibility to fatigue at the single fibre, excised muscle and whole-animal levels. We further show that STIM1 and Orai1 proteins co-localize within the triad junction but do not exist in a preassembled context. These results show that Orai1-dependent SOCE has an important physiological role in muscles of adult mice.


Subject(s)
Calcium Channels/physiology , Calcium/metabolism , Muscle Development , Muscle, Skeletal/metabolism , Animals , Calcium Channels/biosynthesis , Calcium Channels/genetics , Calcium Signaling/genetics , Female , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle Development/genetics , Muscle Fatigue/genetics , Muscle, Skeletal/growth & development , Muscle, Skeletal/ultrastructure , ORAI1 Protein , Stromal Interaction Molecule 1
19.
J Biol Chem ; 288(15): 10567-77, 2013 Apr 12.
Article in English | MEDLINE | ID: mdl-23457298

ABSTRACT

Superoxide flashes are transient bursts of superoxide production within the mitochondrial matrix that are detected using the superoxide-sensitive biosensor, mitochondria-targeted circularly permuted YFP (mt-cpYFP). However, due to the pH sensitivity of mt-cpYFP, flashes were suggested to reflect transient events of mitochondrial alkalinization. Here, we simultaneously monitored flashes with mt-cpYFP and mitochondrial pH with carboxy-SNARF-1. In intact cardiac myocytes and purified skeletal muscle mitochondria, robust mt-cpYFP flashes were accompanied by only a modest increase in SNARF-1 ratio (corresponding to a pH increase of <0.1), indicating that matrix alkalinization is minimal during an mt-cpYFP flash. Individual flashes were also accompanied by stepwise increases of MitoSOX signal and decreases of NADH autofluorescence, supporting the superoxide origin of mt-cpYFP flashes. Transient matrix alkalinization induced by NH4Cl only minimally influenced flash frequency and failed to alter flash amplitude. However, matrix acidification modulated superoxide flash frequency in a bimodal manner. Low concentrations of nigericin (< 100 nM) that resulted in a mild dissipation of the mitochondrial pH gradient increased flash frequency, whereas a maximal concentration of nigericin (5 µm) collapsed the pH gradient and abolished flash activity. These results indicate that mt-cpYFP flash events reflect a burst in electron transport chain-dependent superoxide production that is coincident with a modest increase in matrix pH. Furthermore, flash activity depends strongly on a combination of mitochondrial oxidation and pH gradient.


Subject(s)
Mitochondria, Heart/metabolism , Myocytes, Cardiac/metabolism , Superoxides/metabolism , Ammonium Chloride/pharmacology , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzopyrans/pharmacology , Cells, Cultured , Electron Transport Chain Complex Proteins/metabolism , Fluorescent Dyes/pharmacology , Hydrogen-Ion Concentration , Ionophores/pharmacology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Naphthols/pharmacology , Nigericin/pharmacology , Oxidation-Reduction/drug effects , Proton-Motive Force/drug effects , Proton-Motive Force/physiology , Rats , Rats, Sprague-Dawley , Rhodamines/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...