Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 279(52): 54304-11, 2004 Dec 24.
Article in English | MEDLINE | ID: mdl-15489237

ABSTRACT

The epithelial Ca(2+) channels TRPV5 and TRPV6 mediate the Ca(2+) influx in 1,25-dihydroxyvitamin D(3)-responsive epithelia and are therefore essential in the maintenance of the body Ca(2+) balance. These Ca(2+) channels assemble in (hetero)tetrameric channel complexes with different functional characteristics regarding Ca(2+)-dependent inactivation, ion selectivity, and pharmacological block. Glutathione S-transferase pull-downs and co-immunoprecipitations demonstrated an essential role of the intracellular N- and C-tails in TRPV5 channel assembly by physical interactions between N-N tails, C-C tails, and N-C-tails. Patch clamp analysis in human embryonic kidney (HEK293) cells and (45)Ca(2+) uptake experiments in Xenopus laevis oocytes co-expressing TRPV5 wild-type and truncated proteins indicated that TRPV5 Delta N (deleted N-tail) and TRPV5 Delta C (deleted C-tail) decreased channel activity of wild-type TRPV5 in a dominant-negative manner, whereas TRPV5 Delta N Delta C (deleted N-tail/C-tail) did not affect TRPV5 activity. Oocytes co-expressing wild-type TRPV5 and TRPV5 Delta N or TRPV5 Delta C showed virtually no wild-type TRPV5 expression on the plasma membrane, whereas co-expression of wild-type TRPV5 and TRPV5 Delta N Delta C displayed normal channel surface expression. This indicates that TRPV5 trafficking toward the plasma membrane was disturbed by assembly with TRPV5 Delta N or TRPV5 Delta C but not with TRPV5 Delta N Delta C. TRPV5 channel assembly signals were refined between amino acid positions 64-77 and 596-601 in the N-tail and C-tail, respectively. Pull-down assays and co-immunoprecipitations demonstrated that N- or C-tail mutants lacking these critical assembly domains were unable to interact with tails of TRPV5. In conclusion, two domains in the N-tail (residues 64-77) and C-tail (residues 596-601) of TRPV5 are important for channel subunit assembly, subsequent trafficking of the TRPV5 channel complex to the plasma membrane, and channel activity.


Subject(s)
Calcium Channels/chemistry , Calcium Channels/genetics , Amino Acid Sequence , Animals , Calcium/metabolism , Calcium Channels/physiology , Cell Line , Cell Membrane , Electrophysiology , Embryo, Mammalian , Embryo, Nonmammalian , Escherichia coli/genetics , Gene Expression , Glutathione Transferase/genetics , Humans , Immunosorbent Techniques , Kidney , Oocytes/metabolism , Patch-Clamp Techniques , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/physiology , RNA, Complementary/genetics , Recombinant Fusion Proteins , Sequence Alignment , Structure-Activity Relationship , TRPV Cation Channels , Transfection , Xenopus laevis
2.
Pflugers Arch ; 445(5): 584-8, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12634930

ABSTRACT

The family of epithelial Ca(2+) channels (ECaC) is a unique group of highly Ca(2+)-selective channels consisting of two members, ECaC1 and ECaC2. We used carboxyl terminal truncations and mutants to delineate the molecular determinants of the Ca(2+)-dependent inhibition of ECaC. To this end, rabbit ECaC1 was expressed heterologously with green fluorescent protein (GFP) in human embryonic kidney 293 (HEK293) cells using a bicistronic vector. Deletion of the last 30 amino acids of the carboxyl terminus of ECaC1 (G701X) decreased the Ca(2+) sensitivity significantly. Another critical sequence for Ca(2+)-dependent inactivation of ECaC1 was found upstream in the carboxyl terminus. Analysis of truncations at amino acid 635, 639, 646, 649 and 653 disclosed a critical sequence involved in Ca(2+)-dependent inactivation at positions 650-653. C653X showed decreased Ca(2+) sensitivity, comparable to G701X, while E649X lacked Ca(2+)-dependent inactivation. Interestingly, the number of green fluorescent cells, which is an index of the number of transfected cells, was significantly smaller for cells transfected with truncations shorter than E649 than for cells transfected with wild-type ECaC. However, the expression level of GFP was restored in the presence of the ECaC blocker ruthenium red, suggesting that these truncations resulted in deleterious Ca(2+) influx. In conclusion, we have identified two domains in the carboxyl terminus of ECaC1 that control Ca(2+)-dependent inactivation.


Subject(s)
Calcium Channels/chemistry , Calcium Channels/physiology , Calcium/physiology , Amino Acid Sequence/genetics , Animals , Calcium Channels/genetics , Calcium Channels/metabolism , Cell Line , Humans , Mice , Molecular Sequence Data , Rabbits , Structure-Activity Relationship , TRPV Cation Channels
SELECTION OF CITATIONS
SEARCH DETAIL
...