Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 59(31): 2833-2841, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32659079

ABSTRACT

DNA is a foundational tool in biotechnology and synthetic biology but is limited by sensitivity to DNA-modifying enzymes. Recently, researchers have identified DNA polymerases that can enzymatically synthesize long oligonucleotides of modified DNA (M-DNA) that are resistant to DNA-modifying enzymes. Most applications require M-DNA to be reverse transcribed, typically using a RNA reverse transcriptase, back into natural DNA for sequence analysis or further manipulation. Here, we tested commercially available DNA-dependent DNA polymerases for their ability to reverse transcribe and amplify M-DNA in a one-pot reaction. Three of the six polymerases chosen (Phusion, Q5, and Deep Vent) could reverse transcribe and amplify synthetic 2'F M-DNA in a single reaction with <5 × 10-3 error per base pair. We further used Q5 DNA polymerase to reverse transcribe and amplify M-DNA synthesized by two candidate M-DNA polymerases (SFP1 and SFM4-6), allowing for quantification of the frequency, types, and locations of errors made during M-DNA synthesis. From these studies, we identify SFP1 as one of the most accurate M-DNA polymerases identified to date. Collectively, these studies establish a simple, robust method for the conversion of 2'F M-DNA to DNA in <1 h using commercially available materials, significantly improving the ease of use of M-DNA.


Subject(s)
DNA-Directed DNA Polymerase/metabolism , DNA/chemistry , DNA/genetics , Halogenation , Nucleic Acid Amplification Techniques , Reverse Transcription , DNA/metabolism , Models, Molecular , Nucleic Acid Conformation
2.
Chembiochem ; 18(8): 816-823, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28160372

ABSTRACT

Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants.


Subject(s)
DNA Polymerase I/chemistry , DNA/chemical synthesis , Taq Polymerase/chemistry , DNA/chemistry , DNA Polymerase I/genetics , Manganese/chemistry , Mutation , Protein Engineering , RNA/chemical synthesis , Reverse Transcription , Taq Polymerase/genetics
3.
Biochemistry ; 54(38): 5999-6008, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26334839

ABSTRACT

Chemical modifications to DNA, such as 2' modifications, are expected to increase the biotechnological utility of DNA; however, these modified forms of DNA are limited by their inability to be effectively synthesized by DNA polymerase enzymes. Previous efforts have identified mutant Thermus aquaticus DNA polymerase I (Taq) enzymes capable of recognizing 2'-modified DNA nucleotides. While these mutant enzymes recognize these modified nucleotides, they are not capable of synthesizing full length modified DNA; thus, further engineering is required for these enzymes. Here, we describe comparative biochemical studies that identify useful, but previously uncharacterized, properties of these enzymes; one enzyme, SFM19, is able to recognize a range of 2'-modified nucleotides much wider than that previously examined, including fluoro, azido, and amino modifications. To understand the molecular origins of these differences, we also identify specific amino acids and combinations of amino acids that contribute most to the previously evolved unnatural activity. Our data suggest that a negatively charged amino acid at 614 and mutation of the steric gate residue, E615, to glycine make up the optimal combination for modified oligonucleotide synthesis. These studies yield an improved understanding of the mutational origins of 2'-modified substrate recognition as well as identify SFM19 as the best candidate for further engineering, whether via rational design or directed evolution.


Subject(s)
Nucleotides/metabolism , Protein Engineering , Taq Polymerase/genetics , Thermus/enzymology , Nucleotides/chemistry , Point Mutation , Taq Polymerase/chemistry , Taq Polymerase/metabolism , Thermus/chemistry , Thermus/genetics , Thermus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...