Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
SLAS Discov ; : 100172, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969289

ABSTRACT

The Cellular Thermal Shift Assay (CETSA) enables the study of protein-ligand interactions in a cellular context. It provides valuable information on the binding affinity and specificity of both small and large molecule ligands in a relevant physiological context, hence forming a unique tool in drug discovery. Though high-throughput lab protocols exist for scaling up CETSA, subsequent data analysis and quality control remain laborious and limit experimental throughput. Here, we introduce a scalable and robust data analysis workflow which allows integration of CETSA into routine high throughput screening (HT-CETSA). This new workflow automates data analysis and incorporates quality control (QC), including outlier detection, sample and plate QC, and result triage. We describe the workflow and show its robustness against typical experimental artifacts, show scaling effects, and discuss the impact of data analysis automation by eliminating manual data processing steps.

2.
Nat Neurosci ; 24(3): 355-367, 2021 03.
Article in English | MEDLINE | ID: mdl-33495636

ABSTRACT

Cortical pathology contributes to chronic cognitive impairment of patients suffering from the neuroinflammatory disease multiple sclerosis (MS). How such gray matter inflammation affects neuronal structure and function is not well understood. In the present study, we use functional and structural in vivo imaging in a mouse model of cortical MS to demonstrate that bouts of cortical inflammation disrupt cortical circuit activity coincident with a widespread, but transient, loss of dendritic spines. Spines destined for removal show local calcium accumulations and are subsequently removed by invading macrophages or activated microglia. Targeting phagocyte activation with a new antagonist of the colony-stimulating factor 1 receptor prevents cortical synapse loss. Overall, our study identifies synapse loss as a key pathological feature of inflammatory gray matter lesions that is amenable to immunomodulatory therapy.


Subject(s)
Calcium/metabolism , Cerebral Cortex/metabolism , Inflammation/metabolism , Multiple Sclerosis/metabolism , Phagocytes/metabolism , Synapses/metabolism , Animals , Cerebral Cortex/pathology , Dendritic Spines/metabolism , Dendritic Spines/pathology , Disease Models, Animal , Gray Matter/metabolism , Gray Matter/pathology , Inflammation/pathology , Mice , Microglia/metabolism , Multiple Sclerosis/pathology , Neurons/metabolism , Neurons/pathology , Synapses/pathology
3.
Curr Opin Neurobiol ; 25: 228-36, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24658059

ABSTRACT

Cortical neurons operate within recurrent neuronal circuits. Dissecting their operation is key to understanding information processing in the cortex and requires transparent and adequate dynamical models of circuit function. Convergent evidence from experimental and theoretical studies indicates that strong feedback inhibition shapes the operating regime of cortical circuits. For circuits operating in inhibition-dominated regimes, mathematical and computational studies over the past several years achieved substantial advances in understanding response modulation and heterogeneity, emergent stimulus selectivity, inter-neuron correlations, and microstate dynamics. The latter indicate a surprisingly strong dependence of the collective circuit dynamics on the features of single neuron action potential generation. New approaches are needed to definitely characterize the cortical operating regime.


Subject(s)
Cerebral Cortex/physiology , Models, Neurological , Nerve Net/physiology , Neural Inhibition/physiology , Nonlinear Dynamics , Animals , Cerebral Cortex/cytology , Humans , Nerve Net/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...