Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 50(11): 3665-73, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16966397

ABSTRACT

Peptide deformylase (PDF) catalyzes the hydrolytic removal of the N-terminal formyl group from nascent proteins. This is an essential step in bacterial protein synthesis, making PDF an attractive target for antibacterial drug development. Essentiality of the def gene, encoding PDF from Mycobacterium tuberculosis, was demonstrated through genetic knockout experiments with Mycobacterium bovis BCG. PDF from M. tuberculosis strain H37Rv was cloned, expressed, and purified as an N-terminal histidine-tagged recombinant protein in Escherichia coli. A novel class of PDF inhibitors (PDF-I), the N-alkyl urea hydroxamic acids, were synthesized and evaluated for their activities against the M. tuberculosis PDF enzyme as well as their antimycobacterial effects. Several compounds from the new class had 50% inhibitory concentration (IC50) values of <100 nM. Some of the PDF-I displayed antibacterial activity against M. tuberculosis, including MDR strains with MIC90 values of <1 microM. Pharmacokinetic studies of potential leads showed that the compounds were orally bioavailable. Spontaneous resistance towards these inhibitors arose at a frequency of < or =5 x 10(-7) in M. bovis BCG. DNA sequence analysis of several spontaneous PDF-I-resistant mutants revealed that half of the mutants had acquired point mutations in their formyl methyltransferase gene (fmt), which formylated Met-tRNA. The results from this study validate M. tuberculosis PDF as a drug target and suggest that this class of compounds have the potential to be developed as novel antimycobacterial agents.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents , Mycobacterium/drug effects , Protease Inhibitors/pharmacology , Administration, Oral , Animals , Anti-Bacterial Agents/pharmacokinetics , Blotting, Southern , Buffers , Culture Media , DNA Mutational Analysis , DNA, Bacterial/genetics , Databases, Genetic , Drug Resistance, Bacterial , Escherichia coli/drug effects , Escherichia coli/genetics , Female , Injections, Intravenous , Mice , Microbial Sensitivity Tests , Mycobacterium/genetics , Mycobacterium bovis/drug effects , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Plasmids/genetics , Protease Inhibitors/pharmacokinetics
2.
Antimicrob Agents Chemother ; 50(9): 2976-82, 2006 Sep.
Article in English | MEDLINE | ID: mdl-16940091

ABSTRACT

Host factors involved in viral replication are potentially attractive antiviral targets that are complementary to specific inhibitors of viral enzymes, since resistant mutations against the latter are likely to emerge during long-term treatment. It has been reported recently that cyclosporine, which binds to a family of cellular proteins, cyclophilins, inhibits hepatitis C virus (HCV) replication in vitro. Here, the activities of various cyclosporine derivatives were evaluated in the HCV replicon system. There was a strong correlation between the anti-HCV activity and cyclophilin-binding affinity of these compounds. Of these, NIM811 has been selected as a therapeutic candidate for HCV infection, since it binds to cyclophilins with higher affinity than cyclosporine but is devoid of the significant immunosuppressive activity associated with cyclosporine. NIM811 induced a concentration-dependent reduction of HCV RNA in the replicon cells with a 50% inhibitory concentration of 0.66 microM at 48 h. Furthermore, a greater than three-log(10) viral RNA reduction was achieved after treating the cells with as little as 1 microM of NIM811 for 9 days. In addition, the combination of NIM811 with alpha interferon significantly enhanced anti-HCV activities without causing any increase of cytotoxicity. Taken together, these promising in vitro data warrant clinical investigation of NIM811, an inhibitor of novel mechanism, for the treatment of hepatitis C.


Subject(s)
Cyclophilins/antagonists & inhibitors , Cyclosporine/pharmacology , Hepacivirus/drug effects , Interferon-alpha/pharmacology , Virus Replication/drug effects , Hepacivirus/enzymology , Hepacivirus/physiology , Humans , RNA, Viral/genetics , RNA, Viral/metabolism , Replicon/drug effects
3.
Antimicrob Agents Chemother ; 49(8): 3129-35, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16048914

ABSTRACT

Haemophilus influenzae isolates vary widely in their susceptibilities to the peptide deformylase inhibitor LBM415 (MIC range, 0.06 to 32 microg/ml); however, on average, they are less susceptible than gram-positive organisms, such as Staphylococcus aureus and Streptococcus pneumoniae. Insertional inactivation of the H. influenzae acrB or tolC gene in strain NB65044 (Rd strain KW20) increased susceptibility to LBM415, confirming a role for the AcrAB-TolC pump in determining resistance. Consistent with this, sequencing of a PCR fragment generated with primers flanking the acrRA region from an LBM415-hypersusceptible H. influenzae clinical isolate revealed a genetic deletion of acrA. Inactivation of acrB or tolC in several clinical isolates with atypically reduced susceptibility to LBM415 (MIC of 16 microg/ml or greater) significantly increased susceptibility, confirming that the pump is also a determinant of decreased susceptibility in these clinical isolates. Examination of acrR, encoding the putative repressor of pump gene expression, from several of these strains revealed mutations introducing frameshifts, stop codons, and amino acid changes relative to the published sequence, suggesting that loss of pump repression leads to decreased susceptibility. Supporting this, NB65044 acrR mutants selected by exposure to LBM415 at 8 microg/ml had susceptibilities to LBM415 and other pump substrates comparable to the least sensitive clinical isolates and showed increased expression of pump genes.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Haemophilus influenzae/drug effects , Membrane Transport Proteins/metabolism , Peptides/pharmacology , Amidohydrolases/metabolism , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Drug Resistance, Bacterial/genetics , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Escherichia coli Proteins , Gene Expression Regulation, Bacterial , Haemophilus influenzae/genetics , Haemophilus influenzae/metabolism , Humans , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Mutagenesis, Insertional , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction
4.
Antimicrob Agents Chemother ; 46(9): 2752-64, 2002 Sep.
Article in English | MEDLINE | ID: mdl-12183225

ABSTRACT

Peptide deformylase (PDF) is a prokaryotic metalloenzyme that is essential for bacterial growth and is a new target for the development of antibacterial agents. All previously reported PDF inhibitors with sufficient antibacterial activity share the structural feature of a 2-substituted alkanoyl at the P(1)' site. Using a combination of iterative parallel synthesis and traditional medicinal chemistry, we have identified a new class of PDF inhibitors with N-alkyl urea at the P(1)' site. Compounds with MICs of 200 micro M for matrilysin and other mammalian metalloproteases. Structure-activity relationship analysis identified preferred substitutions resulting in improved potency and decreased cytotoxity. One of the compounds (VRC4307) was cocrystallized with PDF, and the enzyme-inhibitor structure was determined at a resolution of 1.7 A. This structural information indicated that the urea compounds adopt a binding position similar to that previously determined for succinate hydroxamates. Two compounds, VRC4232 and VRC4307, displayed in vivo efficacy in a mouse protection assay, with 50% protective doses of 30.8 and 17.9 mg/kg of body weight, respectively. These N-alkyl urea hydroxamic acids provide a starting point for identifying new PDF inhibitors that can serve as antimicrobial agents.


Subject(s)
Amidohydrolases , Aminopeptidases/antagonists & inhibitors , Hydroxamic Acids/chemical synthesis , Hydroxamic Acids/pharmacology , Protease Inhibitors/chemical synthesis , Protease Inhibitors/pharmacology , Urea/analogs & derivatives , Animals , Bacteria/drug effects , Biotransformation , Crystallography, X-Ray , DNA Primers , Drug Resistance , Drug Screening Assays, Antitumor , Escherichia coli/metabolism , Female , Haemophilus influenzae/drug effects , Haemophilus influenzae/genetics , Humans , Hydroxamic Acids/pharmacokinetics , In Vitro Techniques , Male , Mice , Microbial Sensitivity Tests , Microsomes, Liver/metabolism , Molecular Conformation , Protease Inhibitors/pharmacokinetics , Rats , Rats, Sprague-Dawley , Sepsis/drug therapy , Sepsis/microbiology , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Structure-Activity Relationship , Tumor Cells, Cultured , Urea/chemical synthesis , Urea/pharmacokinetics , Urea/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...