Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Electrophoresis ; 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38041407

ABSTRACT

Precisely and accurately determining the magnetic force and its spatial distribution in microfluidic devices is challenging. Typically, magnetic microfluidic devices are designed in a way to both maximize the force within the separation region and to minimize the necessity for knowing such details-such as designing magnetic geometries that create regions of nearly constant magnetic force or that dictate the behavior of the magnetic force to be highly predictable in a specified region. In this work, we present a method to determine the spatial distribution of the magnetic force field in a magnetic microfluidic device by particle tracking magnetophoresis. Polystyrene microparticles were suspended in a paramagnetic fluid, gadolinium, and this suspension was exposed to various magnetic field geometries. Polystyrene particle motion was tracked using a microscope and images processed using Fiji (ImageJ). From a sample with a large spatial distribution of particle tracks, the magnetic force field distribution was calculated. The force field distribution was fitted to nonlinear spatial distribution models. These experimental models are compared to and supported by 3D simulations of the magnetic force field in COMSOL.

2.
IEEE Trans Biomed Eng ; 69(12): 3582-3590, 2022 12.
Article in English | MEDLINE | ID: mdl-35544484

ABSTRACT

Sickle cell disease (SCD) is an inherited blood disorder that affects millions of people worldwide, especially in low-resource regions of the world, where a rapid and affordable test to properly diagnose the disease would be highly valued. Magnetophoresis is a technique that could simultaneously analyze, quantify, and potentially separate the patient's sickle red blood cells (RBCs) from healthy RBCs, but the magnetic characteristics of sickle RBCs have yet to be reported. In this work, we present the single cell magnetic characterization of RBCs obtained from SCD patients. Sufficient single cells are analyzed from patient samples undergoing transfusion therapy and not yet having transfusion therapy (TP and NTP, respectively), such that means and distributions of these single RBC mobilities are created in the form of histograms which facilitated comparison to RBCs from healthy donors (HD). The magnetic characterization is obtained using a technique known as Cell Tracking Velocimetry (CTV) that quantitatively characterizes the RBC response to magnetic and gravitational fields. The magnetic properties of RBCs containing oxygenated, deoxygenated hemoglobin (Hb) and methemoglobin (oxyHb-RBCs, deoxyHb-RBCs, and metHb-RBCs) are further determined. The NTP samples reported the highest magnetic character, especially when compared to oxyHb-RBCs from HD, which implies impaired oxygen binding capabilities. Also, the oxygen-Hb equilibrium curves are obtained to estimate the magnetic character of the cells under intermediate oxygen levels. Our results confirm higher magnetic moment of SCD blood (NTP) under intermediate oxygen levels. These data demonstrate the potential feasibility of magnetophoresis to identify, quantify and separate sickle RBCs from healthy RBCs.


Subject(s)
Anemia, Sickle Cell , Erythrocytes , Humans , Anemia, Sickle Cell/therapy , Anemia, Sickle Cell/metabolism , Oxygen/metabolism , Magnetic Phenomena
3.
Vox Sang ; 117(6): 803-811, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35262216

ABSTRACT

BACKGROUND AND OBJECTIVES: Red blood cell (RBC) units in hypothermic storage degrade over time, commonly known as the RBC storage lesion. These older RBC units can cause adverse clinical effects when transfused, as older RBCs in the unit lyse and release cell-free haemoglobin (Hb), a potent vasodilator that can elicit vasoconstriction, systemic hypertension and oxidative tissue injury after transfusion. In this study, we examined a novel method of washing ex vivo stored single RBC units to remove accumulated cellular waste, specifically cell-free Hb, using tangential flow filtration (TFF) driven by a centrifugal pump. MATERIALS AND METHODS: The TFF RBC washing system was run under hypothermic conditions at 4°C, at a constant system volume with 0.9 wt% saline as the wash solution. The RBC washing process was conducted on 10 separate RBC units. For this proof-of-concept study, RBC units were expired at the time of washing (60-70 days old). Cell-free Hb was quantified by UV-visible absorbance spectroscopy and analysed via the Winterbourn equations. Pre- and post-wash RBC samples were analysed by Hemox Analyser, Coulter counter and Brookfield rheometer. The RBC volume fraction in solution was measured throughout the wash process by standard haematocrit (HCT) analysis. RESULTS: No substantial decrease in the HCT was observed during the TFF RBC washing process. However, there was a significant decrease in RBC concentration in the first half of the TFF RBC wash process, with no significant change in RBC concentration during the second half of the TFF cell wash process with an 87% overall cell recovery compared with the total number of cells before initiation of cell washing. Utilization of the extinction coefficients and characteristic peaks of each Hb species potentially present in solution was quantified by Winterbourn analysis on retentate and permeate samples for each diacycle to quantify Hb concentration during the washing process. Significant cell-free Hb reduction was observed within the first four diacycles with a starting cell-free Hb concentration in the RBC unit of 0.105 mM, which plateaus to a constant Hb concentration of 0.01 mM or a total extracellular Hb mass of 0.2 g in the resultant washed unit. The oxygen equilibrium curve showed a significant decrease in P50 between the initial and final RBC sample cell wash with an initial P50 of 15.6 ± 1.8 mm Hg and a final P50 of 14 ± 1.62 mm Hg. Cooperativity increased after washing from an initial Hill coefficient of 2.37 ± 0.19 compared with a final value of 2.52 ± 0.12. CONCLUSION: Overall, this study investigated the proof-of-concept use of TFF for washing single RBC units with an emphasis on the removal of cell-free Hb from the unit. Compared with traditional cell washing procedures, the designed system was able to more efficiently remove extracellular Hb but resulted in longer wash times. For a more complete investigation of the TFF RBC washing process, further work should be done to investigate the effects of RBC unit storage after washing. The designed system is lightweight and transportable with the ability to maintain sterility between uses, providing a potential option for bedside ex vivo transfusion in clinical applications.


Subject(s)
Blood Preservation , Erythrocytes , Blood Preservation/methods , Filtration , Hematocrit , Hemoglobins/analysis , Humans , Saline Solution
4.
Sci Rep ; 12(1): 1692, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105914

ABSTRACT

Anemia and iron deficiency continue to be the most prevalent nutritional disorders in the world, affecting billions of people in both developed and developing countries. The initial diagnosis of anemia is typically based on several markers, including red blood cell (RBC) count, hematocrit and total hemoglobin. Using modern hematology analyzers, erythrocyte parameters such as mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), etc. are also being used. However, most of these commercially available analyzers pose several disadvantages: they are expensive instruments that require significant bench space and are heavy enough to limit their use to a specific lab and lead to a delay in results, making them less practical as a point-of-care instrument that can be used for swift clinical evaluation. Thus, there is a need for a portable and economical hematology analyzer that can be used at the point of need. In this work, we evaluated the performance of a system referred to as the cell tracking velocimetry (CTV) to measure several hematological parameters from fresh human blood obtained from healthy donors and from sickle cell disease subjects. Our system, based on the paramagnetic behavior that deoxyhemoglobin or methemoglobin containing RBCs experience when suspended in water after applying a magnetic field, uses a combination of magnets and microfluidics and has the ability to track the movement of thousands of red cells in a short period of time. This allows us to measure not only traditional RBC indices but also novel parameters that are only available for analyzers that assess erythrocytes on a cell by cell basis. As such, we report, for the first time, the use of our CTV as a hematology analyzer that is able to measure MCV, MCH, mean corpuscular hemoglobin concentration (MCHC), red cell distribution width (RDW), the percentage of hypochromic cells (which is an indicator of insufficient marrow iron supply that reflects recent iron reduction), and the correlation coefficients between these metrics. Our initial results indicate that most of the parameters measured with CTV are within the normal range for healthy adults. Only the parameters related to the red cell volume (primarily MCV and RDW) were outside the normal range. We observed significant discrepancies between the MCV measured by our technology (and also by an automated cell counter) and the manual method that calculates MCV through the hematocrit obtained by packed cell volume, which are attributed to the artifacts of plasma trapping and cell shrinkage. While there may be limitations for measuring MCV, this device offers a novel point of care instrument to provide rapid RBC parameters such as iron stores that are otherwise not rapidly available to the clinician. Thus, our CTV is a promising technology with the potential to be employed as an accurate, economical, portable and fast hematology analyzer after applying instrument-specific reference ranges or correction factors.


Subject(s)
Anemia, Sickle Cell/blood , Cell Tracking/instrumentation , Erythrocyte Indices , Flow Cytometry/instrumentation , Microfluidics/instrumentation , Adult , Case-Control Studies , Data Accuracy , Erythrocyte Count , Erythrocytes , Female , Hematocrit , Hemoglobins/analysis , Humans , Magnetic Fields , Male , Middle Aged , Reference Values , Young Adult
5.
PLoS One ; 16(9): e0257061, 2021.
Article in English | MEDLINE | ID: mdl-34478473

ABSTRACT

A new method for hemoglobin (Hb) deoxygenation, in suspension or within red blood cells (RBCs) is described using the commercial enzyme product, EC-Oxyrase®. The enzymatic deoxygenation method has several advantages over established deoxygenation methodologies, such as avoiding side reactions that produce methemoglobin (metHb), thus eliminating the need for an inert deoxygenation gas and airtight vessel, and facilitates easy re-oxygenation of Hb/RBCs by washing with a buffer that contains dissolved oxygen (DO). The UV-visible spectra of deoxyHb and metHb purified from human RBCs using three different preparation methods (sodium dithionite [to produce deoxyHb], sodium nitrite [to produce metHb], and EC-Oxyrase® [to produce deoxyHb]) show the high purity of deoxyHb prepared using EC-Oxyrase® (with little to no metHb or hemichrome production from side reactions). The oxyHb deoxygenation time course of EC-Oxyrase® follows first order reaction kinetics. The paramagnetic characteristics of intracellular Hb in RBCs were compared using Cell Tracking Velocimetry (CTV) for healthy and sickle cell disease (SCD) donors and oxygen equilibrium curves show that the function of healthy RBCs is unchanged after EC-Oxyrase® treatment. The results confirm that this enzymatic approach to deoxygenation produces pure deoxyHb, can be re-oxygenated easily, prepared aerobically and has similar paramagnetic mobility to existing methods of producing deoxyHb and metHb.


Subject(s)
Hemoglobins/analysis , Magnetics , Oxyhemoglobins/analysis , Anemia, Sickle Cell , Female , Humans , Male , Methemoglobin/analysis , Oxygen/analysis , Tissue Donors
6.
Exp Hematol ; 99: 21-31.e5, 2021 07.
Article in English | MEDLINE | ID: mdl-34015390

ABSTRACT

The presence of iron in circulating monocytes is well known as they play an essential role in iron recycling. It has been demonstrated that the iron content of blood cells can be measured through their magnetic behavior; however, the magnetic properties of different monocyte subtypes remain unknown. In this study we report, for the first time, the magnetic behavior of classical, intermediate and non-classical monocytes, which may be related to their iron storage capacity. The magnetic properties of monocytes were compared with those of other blood cells, such as lymphocytes and red blood cells in the oxyhemoglobin and methemoglobin states, and a cancer cell type. For this analysis, we used an instrument referred to as a Cell Tracking Velocimetry (CTV), which quantitatively characterizes the magnetic behavior of biological entities. Our results revealed that significant fractions of the intermediate and non-classical monocytes (up to 59% and 65% depending on the sample, respectively) have paramagnetic properties, suggesting their higher iron storage capacities. Moreover, our findings have implications for the immunomagnetic separation industry; we propose that negative magnetic isolation techniques for recovering monocytes from blood should be used with caution, as it is possible to lose magnetic monocytes when using this technique.


Subject(s)
Erythrocytes/cytology , Flow Cytometry , Magnetic Fields , Monocytes/cytology , Erythrocytes/metabolism , Humans , Monocytes/metabolism
8.
Anal Chem ; 92(2): 1956-1962, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31874030

ABSTRACT

The current clinical method for detecting anemia focuses on measuring the concentration of hemoglobin (Hb) in blood. However, recent developments in particle tracking algorithms and the understanding of the relationship between Hb and magnetism has enabled the quantitative measurement of the Hb content in a single red blood cell, RBC, based on magnetophoretic mobility. To further explore this relationship, 22 human blood samples obtained from 17 healthy volunteers were analyzed by the cell tracking velocimetry system, and the calculated Hb concentration from these measurements was compared to the values measured by UV-visible spectrophotometry, the standard method for measuring Hb in clinical laboratories. The results show close correlations between the mean of the spectrophotometric and magnetophoretic methods; however, single cell analysis with the magnetophoretic mobility method allows further elucidation of the distribution of Hb concentration within RBCs from a donor sample to be determined. Histograms of these magnetophoretic mobility distributions indicate that the fraction of RBCs that are below the bulk Hb concentration that defines anemia varies not only from donor to donor but also in the same donor over time. Consistent with a variable fraction below the anemic Hb concentration, the distribution around the mean has a large range. Previous studies have indicated that RBCs lose Hb during ex vivo storage; however, it is not known if this variability in the distribution of Hb content is a function of the age of the RBCs in a donor, suggesting a variable rate in RBC production between donors, or variability in available iron at the time of RBC formation. We suggest our cell tracking velocimetry system can reveal more information regarding this matter.


Subject(s)
Cell Tracking/methods , Hemoglobins/analysis , Rheology/methods , Adult , Anemia/diagnosis , Erythrocytes/chemistry , Female , Humans , Male , Middle Aged , Young Adult
9.
Cytometry A ; 95(5): 478-487, 2019 05.
Article in English | MEDLINE | ID: mdl-30958642

ABSTRACT

The presence of iron in circulating monocytes is well known as they play essential roles in iron recycling. Also, the storage of this metal as well as its incorrect uptake and/or release are important data to diagnose different pathologies. It has been demonstrated that iron storage in human blood cells can be measured through their magnetic behavior with high accuracy; however, the magnetic characteristics of monocytes have not been reported so far to the best of our knowledge. Therefore, in this work, we report, for the first time, the physical and magnetic properties of human monocytes, along with plasma platelets, oxyhemoglobin red blood cells (oxyHb-RBCs), and methemoglobin red blood cells (metHb-RBCs). The different cell populations were separated by Ficoll-density gradient centrifugation, followed by a flow sorting step to isolate monocytes from peripheral blood mononuclear cells. The different fractions were analyzed by Coulter Counter (for determining the size distribution and concentration) and the sorted monocytes were qualitatively analyzed on ImageStream, a state-of-the-art imaging cytometer. The analysis of the Coulter Counter and ImageStream data suggests that although there exists contamination in the monocyte fraction, the integrity of the sorted monocytes appears to be intact and the concentration was high enough to precisely measure their magnetic velocity by Cell Tracking Velocimetry. Surprisingly, monocytes reported the highest magnetic mobility from the four fractions under analysis, with an average magnetic velocity 7.8 times higher than MetHb-RBCs, which is the only type of cells with positive magnetic velocities. This value is equivalent to a susceptibility 2.5 times higher than the value reported by fresh MetHb-RBCs. It should be noted that this is the first study that reports that a subpopulation of human monocytes is much more magnetic than MetHb-RBCs, opening the door to the possible isolation of human monocytes by label-free magnetic techniques. Further, it is suggested that these magnetic monocytes could "contaminate" positively selected, immunomagnetically labeled blood cells (i.e., during a process using magnetically conjugated antibodies targeting cells, such as CD34 positive cells). Conversely, these magnetic monocytes could be inadvertently removed from a desired blood population when one is using a negative magnetic isolation technique to target cells for removal. © 2019 International Society for Advancement of Cytometry.


Subject(s)
Blood/metabolism , Magnetic Phenomena , Monocytes/cytology , Cell Separation , Cell Size , Cell Tracking , Centrifugation, Density Gradient , Flow Cytometry , Humans , Image Processing, Computer-Assisted
10.
Analyst ; 144(3): 935-942, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30617361

ABSTRACT

This study initially focused on characterizing the aging process of red blood cells by correlating the loss of hemoglobin and the translocation of phosphatidylserine (PS) in expired human red blood cells, hRBCs. Five pre-storage, leukoreduced hRBC units in AS-5 solution were stored between 1 and 6 °C for 42 days. Aliquots from each of these units were stained with Annexin-V FLUOS, which binds to externalized PS, and the hemoglobin within the cells was placed in a methemoglobin state with sodium nitrite, metHb. These aliquots were subsequently sorted into four sub-populations, ranging from no PS expression to high PS expression using a BD FACS ARIAIII. Each of these sub-fractions were introduced into the cell tracking velocimetry apparatus which measured both the magnetically-induced and the gravity-induced velocity. Subsequently, the samples were removed from the cell tracking velocimetry instrument and characterized using the Multisizer 4e Coulter Counter. From the magnetically-induced velocity, the amount of hemoglobin, in pg Hb per cell can be determined, and using an average value of the density of RBCs, the size can be determined. For the PS negative sub-fraction of RBCs, the size of the RBC was as expected but the average hemoglobin, Hb, content was below the threshold which defines anemia. In contrast, unexpected results were observed with the various levels of expression of PS. First, virtually all of the PS expressing cells were significantly smaller, on the order of 1 micron, than a normal RBC after 42 days of storage; yet the density of these small cells/microvesicles was such that they had settling velocities similar to normal-sized RBCs. Further, while the total amount of Hb per small cell/microvesicle was only approximately 25% of the full-sized RBCs, the volume of these small cells/microvesicles is only 1/200 of the PS negative RBCs. This suggests that these PS expressing cells are shrunken RBCs, or shrunken microvesicles from RBCs that concentrated the Hb internally. These results suggest not only a relationship between the loss of hemoglobin and the amount of PS exposed on the cellular outer wall, but also a mechanism by which these aged RBCs break down. It is not known at this time whether this is an artifact of storage or similar mechanisms occur in circulation within the human body.


Subject(s)
Cell Tracking/methods , Erythrocytes/metabolism , Hemoglobins/analysis , Phosphatidylserines/analysis , Rheology/methods , Single-Cell Analysis/methods , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...