Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Blood Adv ; 2024 05 30.
Article in English | MEDLINE | ID: mdl-38815238

ABSTRACT

Epstein-Barr virus (EBV) is a potent carcinogen linked to hematologic and solid malignancies, causing significant global morbidity and mortality. Therapy using allogeneic EBV-specific lymphocytes shows promise in certain populations, but the impact of EBV genome variation on these strategies remains unexplored. To address this, we sequenced 217 EBV genomes, including hematologic malignancies from Guatemala, Peru, Malawi, and Taiwan, and analyzed them alongside 1,307 publicly available EBV genomes from cancer, non-malignant diseases, and healthy individuals across Africa, Asia, Europe, North America, and South America. These included the first NK/T-cell lymphoma (NKTCL) EBV genomes reported outside East Asia. Our findings indicate that previously proposed EBV genome variants specific to certain cancer types are more closely tied to geographic origin than cancer histology. This included variants previously reported to be specific to NKTCL but were prevalent in EBV genomes from other cancer types and healthy individuals in East Asia. After controlling for geographic region, we did identify multiple NKTCL-specific variants associated with a 7.8- to 21.9- fold increased risk. We also observed frequent variations in EBV genomes affecting peptide sequences previously reported to bind common MHC alleles. Finally, we found several non-synonymous variants spanning the coding sequences of current vaccine targets BALF4, BKRF2, BLLF1, BXLF2, BZLF1, and BZLF2. These results highlight the need to consider geographic variation in EBV genomes when devising strategies for exploiting adaptive immune responses against EBV-related cancers, ensuring greater global effectiveness and equity in prevention and treatment.

2.
J Infect Dis ; 229(1): 73-82, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-37433031

ABSTRACT

BACKGROUND: The 2 cofactors in the etiology of Burkitt lymphoma (BL) are Epstein-Barr virus (EBV) and repeated Plasmodium falciparum malaria infections. This study evaluated EBV loads in mucosal and systemic compartments of children with malaria and controls. Age was analyzed as a covariate because immunity to malaria in endemic regions is age dependent. METHODS: Children (2-10 years) with clinical malaria from Western Kenya and community controls without malaria were enrolled. Saliva and blood samples were collected, EBV viral load was assessed by quantitative polymerase chain reaction, and EpiTYPER MassARRAY was used to assess methylation of 3 different EBV genes. RESULTS: Regardless of the compartment, we detected EBV more frequently in malaria cases compared to controls, although the difference was not significant. When EBV was detected, there were no differences in viral load between cases and controls. However, EBV methylation was significantly lower in the malaria group compared to controls in both plasma and saliva (P < .05), indicating increased EBV lytic replication. In younger children before development of immunity to malaria, there was a significant effect of malaria on EBV load in peripheral blood mononuclear cells (P = .04). CONCLUSIONS: These data suggest that malaria can directly modulate EBV persistence in children, increasing their risk for BL.


Subject(s)
Burkitt Lymphoma , Epstein-Barr Virus Infections , Malaria , Child , Humans , Herpesvirus 4, Human , Kenya/epidemiology , Leukocytes, Mononuclear , Malaria/complications , Malaria/epidemiology , Burkitt Lymphoma/epidemiology , Burkitt Lymphoma/etiology
3.
Blood Adv ; 8(1): 150-163, 2024 01 09.
Article in English | MEDLINE | ID: mdl-37782774

ABSTRACT

ABSTRACT: Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma, and patients who relapse on targeted therapies have poor prognosis. Protein arginine methyltransferase 5 (PRMT5), an enzyme essential for B-cell transformation, drives multiple oncogenic pathways and is overexpressed in MCL. Despite the antitumor activity of PRMT5 inhibition (PRT-382/PRT-808), drug resistance was observed in a patient-derived xenograft (PDX) MCL model. Decreased survival of mice engrafted with these PRMT5 inhibitor-resistant cells vs treatment-naive cells was observed (P = .005). MCL cell lines showed variable sensitivity to PRMT5 inhibition. Using PRT-382, cell lines were classified as sensitive (n = 4; 50% inhibitory concentration [IC50], 20-140 nM) or primary resistant (n = 4; 340-1650 nM). Prolonged culture of sensitive MCL lines with drug escalation produced PRMT5 inhibitor-resistant cell lines (n = 4; 200-500 nM). This resistant phenotype persisted after prolonged culture in the absence of drug and was observed with PRT-808. In the resistant PDX and cell line models, symmetric dimethylarginine reduction was achieved at the original PRMT5 inhibitor IC50, suggesting activation of alternative resistance pathways. Bulk RNA sequencing of resistant cell lines and PDX relative to sensitive or short-term-treated cells, respectively, highlighted shared upregulation of multiple pathways including mechanistic target of rapamycin kinase [mTOR] signaling (P < 10-5 and z score > 0.3 or < 0.3). Single-cell RNA sequencing analysis demonstrated a strong shift in global gene expression, with upregulation of mTOR signaling in resistant PDX MCL samples. Targeted blockade of mTORC1 with temsirolimus overcame the PRMT5 inhibitor-resistant phenotype, displayed therapeutic synergy in resistant MCL cell lines, and improved survival of a resistant PDX.


Subject(s)
Lymphoma, Mantle-Cell , Humans , Mice , Animals , Adult , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Cell Line, Tumor , Neoplasm Recurrence, Local , Signal Transduction , Enzyme Inhibitors/therapeutic use , Mechanistic Target of Rapamycin Complex 1/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism
4.
Front Microbiol ; 14: 1270824, 2023.
Article in English | MEDLINE | ID: mdl-38029140

ABSTRACT

Background: Epstein-Barr virus (EBV) is a human lymphotropic herpesvirus with a causative agent in cancer. There are two genotypes of EBV (EBV genotype 1 and EBV genotype 2) that have been shown to infect humans. This study aimed to characterize the EBV genotype among people with human immunodeficiency virus (PWH) and HIV-negative individuals in Ethiopia. Methods: DNA was extracted from peripheral blood mononuclear cells (PBMCs). Conventional polymerase chain reaction (cPCR) targeting EBNA3C genes was performed for genotyping. A quantitative real-time PCR (q-PCR) assay for EBV DNA (EBNA1 ORF) detection and viral load quantification was performed. Statistical significance was determined at a value of p < 0.05. Result: In this study, 155 EBV-seropositive individuals were enrolled, including 128 PWH and 27 HIV-negative individuals. Among PWH, EBV genotype 1 was the most prevalent (105/128, 82.0%) genotype, followed by EBV genotype 2 (17/128, 13.3%), and mixed infection (6/128, 4.7%). In PWH, the median log10 of EBV viral load was 4.23 copies/ml [interquartile range (IQR): 3.76-4.46], whereas it was 3.84 copies/ml (IQR: 3.74-4.02) in the HIV-negative group. The EBV viral load in PWH was significantly higher than that in HIV-negative individuals (value of p = 0.004). In PWH, the median log10 of EBV viral load was 4.25 copies/ml (IQR: 3.83-4.47) in EBV genotype 1 and higher than EBV genotype 2 and mixed infection (p = 0.032). Conclusion: In Ethiopia, EBV genotype 1 was found to be the most predominant genotype, followed by EBV genotype 2. Understanding the genotype characterization of EBV in PWH is essential for developing new and innovative strategies for preventing and treating EBV-related complications in this population.

5.
Microorganisms ; 11(10)2023 Oct 22.
Article in English | MEDLINE | ID: mdl-37894264

ABSTRACT

The Epstein-Barr virus (EBV) is a known oncogenic virus associated with various lymphoma subtypes throughout the world. However, there is a lack of information regarding EBV prevalence in lymphoma patients, specifically in Ethiopia. This study aimed to investigate the presence of the EBV and determine its viral load in lymphoma patients from Ethiopia using molecular and serological approaches. Lymphoma patient samples were collected from the Ethiopian population. DNA and serum samples were extracted and subjected to molecular detection methods, including quantitative polymerase chain reaction (qPCR) analysis targeting the EBNA1 gene. Serological analyses were performed using an enzyme-linked immunosorbent assay (ELISA) to detect EBV viral capsid antigen IgG antibodies. EBV DNA was detected in 99% of lymphoma patients using qPCR, and serological analyses showed EBV presence in 96% of cases. A high EBV viral load (>10,000 EBV copies/mL) was observed in 56.3% of patients. The presence of high EBV viral loads was observed in 59.3% of HL patients and 54.8% of NHL patients. This study provides important insights into the prevalence and viral load of the EBV among lymphoma patients in Ethiopia. The findings contribute to the limited knowledge in this area and can serve as a foundation for future research.

6.
Int J Mol Sci ; 24(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37762195

ABSTRACT

Epstein-Barr virus (EBV) is an oncogenic herpes virus associated with several human malignancies. Two main EBV genotypes (type 1 and type 2) distinguished by the differences in EBV nuclear antigens are known. Geographic variability in these genetic differences has been observed in the incidence of some EBV-related tumors. Here, we investigated the genetic variation of EBV in lymphoma specimens collected in Ethiopia. A total of 207 DNA samples were used for EBV detection and typing, and EBNA1 and EBNA3C genes were used to detect and subtype the EBV genome, respectively. EBV genotype 1 was detected in 52.2% of lymphoma patients. EBV genotype 2 was detected in 38.2% of the lymphoma patients, and 9.7% were coinfected by both EBV genotypes. Overall, 52.8% of the Hodgkin's lymphoma (HL) patients and 51.8% of non-Hodgkin's lymphoma (NHL) patients showed the presence of genotype 1. Meanwhile, 42.8% and 2.3% of HL patients and 35.8% and 12.4% of NHL patients showed EBV genotype 2 and both genotypes, respectively. Significant associations between the age groups and EBV genotypes were observed (p = 0.027). However, no significant association was seen between EBV genotypes and other sociodemographic and clinical characteristics. This study showed that the distribution of EBV genotype 1 was higher in Ethiopian lymphoma patients.

7.
Viruses ; 15(8)2023 08 15.
Article in English | MEDLINE | ID: mdl-37632085

ABSTRACT

Epstein-Barr virus (EBV) is a well-known risk factor for the development of nasopharyngeal carcinoma, Hodgkin's lymphoma (HL), and Non-Hodgkin's lymphoma (NHL). People with HIV infection (PWH) are at increased risk for EBV-associated malignancies such as HL and NHL. Nevertheless, there are limited data on the burden of EBV among this population group in Ethiopia. Hence, this study aimed to determine the burden of EBV infection among adult HIV-positive individuals in Ethiopia and assess the determinants of EBV DNA positivity. We conducted a cross-sectional study at the Tikur Anbessa Specialised Hospital from March 2020 to March 2021. Two hundred and sixty individuals were enrolled in this study, including 179 HIV-positive and 81 HIV-negative individuals. A structured questionnaire was used to capture demographic and individual attributes. In addition, the clinical data of patients were also retrieved from clinical records. EBV viral capsid antigen (VCA) IgG antibody was measured by multiplex flow immunoassay, and EBV DNA levels were tested by quantitative real-time polymerase chain reaction (q-PCR) assays targeting the EBNA-1 open reading frame (ORF). Descriptive statistics were conducted to assess each study variable. A multivariable logistic regression model was applied to evaluate the determinants of EBV infection. Statistical significance was determined at a p-value < 0.05. Two hundred and fifty-three (97.7%) study participants were seropositive for the EBV VCA IgG antibody. Disaggregated by HIV status, 99.4% of HIV-positive and 93.8% of HIV-negative participants were EBV seropositive. In this study, 49.7% of HIV-positive and 24.7% of HIV-negative individuals were EBV DNA positive. PWH had a higher risk of EBV DNA positivity at 3.05 times (AOR: 3.05, 95% CI: 1.40-6.67). Moreover, among PWH, those with an HIV viral load greater than 1000 RNA copies/mL (AOR = 5.81, 95% CI = 1.40, 24.13) had a higher likelihood of EBV DNA positivity. The prevalence of EBV among PWH was significantly higher than among HIV-negative individuals. Higher HIV viral loads in PWH were associated with an increased risk of EBV DNA positivity. Since the increases in the viral load of EBV DNA among PWH could be related to the risk of developing EBV-associated cancers, it is necessary for more research on the role of EBV in EBV-associated cancer in this population group to be carried out.


Subject(s)
Epstein-Barr Virus Infections , HIV Infections , HIV Seropositivity , Hodgkin Disease , Lymphoma, Non-Hodgkin , Nasopharyngeal Neoplasms , Humans , Adult , Herpesvirus 4, Human/genetics , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/epidemiology , HIV Infections/complications , HIV Infections/epidemiology , Ethiopia/epidemiology , Cross-Sectional Studies , Antibodies, Viral , Immunoglobulin G
8.
Cancers (Basel) ; 15(11)2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37297008

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous herpes virus associated with various cancers. EBV establishes latency with life-long persistence in memory B-cells and can reactivate lytic infection placing immunocompromised individuals at risk for EBV-driven lymphoproliferative disorders (EBV-LPD). Despite the ubiquity of EBV, only a small percentage of immunocompromised patients (~20%) develop EBV-LPD. Engraftment of immunodeficient mice with peripheral blood mononuclear cells (PBMCs) from healthy EBV-seropositive donors leads to spontaneous, malignant, human B-cell EBV-LPD. Only about 20% of EBV+ donors induce EBV-LPD in 100% of engrafted mice (High-Incidence, HI), while another 20% of donors never generate EBV-LPD (No-Incidence, NI). Here, we report HI donors to have significantly higher basal T follicular helper (Tfh) and regulatory T-cells (Treg), and depletion of these subsets prevents/delays EBV-LPD. Transcriptomic analysis of CD4+ T cells from ex vivo HI donor PBMC revealed amplified cytokine and inflammatory gene signatures. HI vs. NI donors showed a marked reduction in IFNγ production to EBV latent and lytic antigen stimulation. In addition, we observed abundant myeloid-derived suppressor cells in HI donor PBMC that decreased CTL proliferation in co-cultures with autologous EBV+ lymphoblasts. Our findings identify potential biomarkers that may identify individuals at risk for EBV-LPD and suggest possible strategies for prevention.

9.
Blood ; 142(10): 887-902, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37267517

ABSTRACT

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with an overall poor prognosis, particularly for patients that progress on targeted therapies. Novel, more durable treatment options are needed for patients with MCL. Protein arginine methyltransferase 5 (PRMT5) is overexpressed in MCL and plays an important oncogenic role in this disease via epigenetic and posttranslational modification of cell cycle regulators, DNA repair genes, components of prosurvival pathways, and RNA splicing regulators. The mechanism of targeting PRMT5 in MCL remains incompletely characterized. Here, we report on the antitumor activity of PRMT5 inhibition in MCL using integrated transcriptomics of in vitro and in vivo models of MCL. Treatment with a selective small-molecule inhibitor of PRMT5, PRT-382, led to growth arrest and cell death and provided a therapeutic benefit in xenografts derived from patients with MCL. Transcriptional reprograming upon PRMT5 inhibition led to restored regulatory activity of the cell cycle (p-RB/E2F), apoptotic cell death (p53-dependent/p53-independent), and activation of negative regulators of B-cell receptor-PI3K/AKT signaling (PHLDA3, PTPROt, and PIK3IP1). We propose pharmacologic inhibition of PRMT5 for patients with relapsed/refractory MCL and identify MTAP/CDKN2A deletion and wild-type TP53 as biomarkers that predict a favorable response. Selective targeting of PRMT5 has significant activity in preclinical models of MCL and warrants further investigation in clinical trials.


Subject(s)
Lymphoma, Mantle-Cell , Phosphatidylinositol 3-Kinases , Adult , Humans , Cell Line, Tumor , Lymphoma, Mantle-Cell/drug therapy , Lymphoma, Mantle-Cell/genetics , Lymphoma, Mantle-Cell/pathology , Phosphatidylinositol 3-Kinases/metabolism , Protein-Arginine N-Methyltransferases/metabolism , Signal Transduction , Tumor Suppressor Protein p53/metabolism
11.
J Immunol ; 209(6): 1212-1223, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35995507

ABSTRACT

Chronic lymphocytic leukemia (CLL) is the most common adult leukemia, but, despite advances in treatment, many patients still experience relapse. CLL cells depend on interactions with supportive cells, and nurse-like cells (NLCs) are the major such cell type. However, little is known about how NLCs develop. Here, we performed DNA methylation analysis of CLL patient-derived NLCs using the 850K Illumina array, comparing CD14+ cells at day 1 (monocytes) versus day 14 (NLCs). We found a strong loss of methylation in AP-1 transcription factor binding sites, which may be driven by MAPK signaling. Testing of individual MAPK pathways (MEK, p38, and JNK) revealed a strong dependence on MEK/ERK for NLC development, because treatment of patient samples with the MEK inhibitor trametinib dramatically reduced NLC development in vitro. Using the adoptive transfer Eµ-TCL1 mouse model of CLL, we found that MEK inhibition slowed CLL progression, leading to lower WBC counts and to significantly longer survival time. There were also lower numbers of mouse macrophages, particularly within the M2-like population. In summary, NLC development depends on MEK signaling, and inhibition of MEK leads to increased survival time in vivo. Hence, targeting the MEK/ERK pathway may be an effective treatment strategy for CLL.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Cell Differentiation , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Monocytes/metabolism , Transcription Factor AP-1/metabolism
12.
Blood Cancer Discov ; 3(2): 154-169, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35247900

ABSTRACT

Extranodal natural killer/T-cell lymphoma (ENKTL) is an aggressive, rare lymphoma of natural killer (NK) cell origin with poor clinical outcomes. Here we used phenotypic and molecular profiling, including epigenetic analyses, to investigate how ENKTL ontogeny relates to normal NK-cell development. We demonstrate that neoplastic NK cells are stably, but reversibly, arrested at earlier stages of NK-cell maturation. Genes downregulated in the most epigenetic immature tumors were associated with polycomb silencing along with genomic gain and overexpression of EZH2. ENKTL cells exhibited genome-wide DNA hypermethylation. Tumor-specific DNA methylation gains were associated with polycomb-marked regions, involving extensive gene silencing and loss of transcription factor binding. To investigate therapeutic targeting, we treated novel patient-derived xenograft (PDX) models of ENKTL with the DNA hypomethylating agent, 5-azacytidine. Treatment led to reexpression of NK-cell developmental genes, phenotypic NK-cell differentiation, and prolongation of survival. These studies lay the foundation for epigenetic-directed therapy in ENKTL. SIGNIFICANCE: Through epigenetic and transcriptomic analyses of ENKTL, a rare, aggressive malignancy, along with normal NK-cell developmental intermediates, we identified that extreme DNA hypermethylation targets genes required for NK-cell development. Disrupting this epigenetic blockade in novel PDX models led to ENKTL differentiation and improved survival. This article is highlighted in the In This Issue feature, p. 85.


Subject(s)
Lymphoma, Extranodal NK-T-Cell , Natural Killer T-Cells , Epigenomics , Gene Expression Profiling , Humans , Killer Cells, Natural/pathology , Lymphoma, Extranodal NK-T-Cell/drug therapy , Natural Killer T-Cells/pathology
13.
Cell Rep ; 38(3): 110259, 2022 01 18.
Article in English | MEDLINE | ID: mdl-35045301

ABSTRACT

CD21low age-associated or atypical memory B cells are autoantibody enriched and poised for plasma cell differentiation. These cells overaccumulate in chronic infections, autoimmune disease, and immunodeficiency, posing the question of what checkpoints normally oppose their accumulation. Here, we reveal a critical role for paralogous calcium-NFAT-regulated transcription factors EGR2 and EGR3 that are induced in self-reactive B cells. CD21low and B1 B cells lacking EGR2 and EGR3 accumulate and circulate in young mice in numbers 10- to 20-fold greater than normal and overexpress a large set of EGR2 ChIP-seq target genes, including known drivers of plasma cell differentiation. Most follicular B cells constitutively express Egr2 proportionally to surface IgM downregulation by self-antigens, and EGR2/3 deficiency abolishes this cardinal feature of B cell anergy. These results explain the cardinal features of B cell anergy, define a key transcriptional checkpoint repressing CD21low B cell formation, and inform how NFATC1 or EGR2 mutations promote B1 cell-derived chronic lymphocytic leukemias.


Subject(s)
B-Lymphocytes/immunology , Clonal Anergy/immunology , Early Growth Response Protein 2/immunology , Early Growth Response Protein 3/immunology , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmunity/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocytes/metabolism , Early Growth Response Protein 2/metabolism , Early Growth Response Protein 3/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Male , Mice , Receptors, Complement 3d/immunology
14.
J Immunol ; 207(6): 1672-1682, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34417259

ABSTRACT

NK cells are known to be developmentally blocked and functionally inhibited in patients with acute myeloid leukemia (AML), resulting in poor clinical outcomes. In this study, we demonstrate that whereas NK cells are inhibited, closely related type 1 innate lymphoid cells (ILC1s) are enriched in the bone marrow of leukemic mice and in patients with AML. Because NK cells and ILC1s share a common precursor (ILCP), we asked if AML acts on the ILCP to alter developmental potential. A combination of ex vivo and in vivo studies revealed that AML skewing of the ILCP toward ILC1s and away from NK cells represented a major mechanism of ILC1 generation. This process was driven by AML-mediated activation of the aryl hydrocarbon receptor (AHR), a key transcription factor in ILCs, as inhibition of AHR led to decreased numbers of ILC1s and increased NK cells in the presence of AML. These results demonstrate a mechanism of ILC developmental skewing in AML and support further preclinical study of AHR inhibition in restoring normal NK cell development and function in the setting of AML.


Subject(s)
Cell Differentiation/immunology , Immunity, Innate , Killer Cells, Natural/immunology , Leukemia, Myeloid, Acute/immunology , Animals , Azo Compounds/pharmacology , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Marrow/immunology , Carbazoles/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Disease Models, Animal , Female , Humans , Leukemia, Myeloid, Acute/blood , Lymphocyte Count , Male , Mice , Mice, Inbred C57BL , Pyrazoles/pharmacology , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction/drug effects
15.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34205762

ABSTRACT

oriC is a region of the bacterial chromosome at which the initiator protein DnaA interacts with specific sequences, leading to DNA unwinding and the initiation of chromosome replication. The general architecture of oriCs is universal; however, the structure of oriC and the mode of orisome assembly differ in distantly related bacteria. In this work, we characterized oriC of Helicobacter pylori, which consists of two DnaA box clusters and a DNA unwinding element (DUE); the latter can be subdivided into a GC-rich region, a DnaA-trio and an AT-rich region. We show that the DnaA-trio submodule is crucial for DNA unwinding, possibly because it enables proper DnaA oligomerization on ssDNA. However, we also observed the reverse effect: DNA unwinding, enabling subsequent DnaA-ssDNA oligomer formation-stabilized DnaA binding to box ts1. This suggests the interplay between DnaA binding to ssDNA and dsDNA upon DNA unwinding. Further investigation of the ts1 DnaA box revealed that this box, together with the newly identified c-ATP DnaA box in oriC1, constitute a new class of ATP-DnaA boxes. Indeed, in vitro ATP-DnaA unwinds H. pylori oriC more efficiently than ADP-DnaA. Our results expand the understanding of H. pylori orisome formation, indicating another regulatory pathway of H. pylori orisome assembly.


Subject(s)
Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Helicobacter pylori/metabolism , Origin Recognition Complex , Adenosine Triphosphate/metabolism , Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Helicobacter pylori/genetics , Mutation
16.
Cancer Res ; 81(16): 4194-4204, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34045189

ABSTRACT

STK11 (liver kinase B1, LKB1) is the fourth most frequently mutated gene in lung adenocarcinoma, with loss of function observed in up to 30% of all cases. Our previous work identified a 16-gene signature for LKB1 loss of function through mutational and nonmutational mechanisms. In this study, we applied this genetic signature to The Cancer Genome Atlas (TCGA) lung adenocarcinoma samples and discovered a novel association between LKB1 loss and widespread DNA demethylation. LKB1-deficient tumors showed depletion of S-adenosyl-methionine (SAM-e), which is the primary substrate for DNMT1 activity. Lower methylation following LKB1 loss involved repetitive elements (RE) and altered RE transcription, as well as decreased sensitivity to azacytidine. Demethylated CpGs were enriched for FOXA family consensus binding sites, and nuclear expression, localization, and turnover of FOXA was dependent upon LKB1. Overall, these findings demonstrate that a large number of lung adenocarcinomas exhibit global hypomethylation driven by LKB1 loss, which has implications for both epigenetic therapy and immunotherapy in these cancers. SIGNIFICANCE: Lung adenocarcinomas with LKB1 loss demonstrate global genomic hypomethylation associated with depletion of SAM-e, reduced expression of DNMT1, and increased transcription of repetitive elements.


Subject(s)
AMP-Activated Protein Kinase Kinases/physiology , Adenocarcinoma/genetics , DNA Methylation , Lung Neoplasms/genetics , S-Adenosylmethionine/metabolism , AMP-Activated Protein Kinase Kinases/genetics , Adenocarcinoma/metabolism , Cell Line , Cell Survival , Cluster Analysis , Computational Biology , CpG Islands , Databases, Genetic , Epigenesis, Genetic , Genes, ras , Humans , Lung Neoplasms/metabolism , Methionine , Mutation , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins p21(ras)/genetics , Repetitive Sequences, Nucleic Acid
17.
Front Microbiol ; 11: 581401, 2020.
Article in English | MEDLINE | ID: mdl-33133049

ABSTRACT

Faithful DNA replication is crucial for viability of cells across all kingdoms. Targeting DNA replication is a viable strategy for inhibition of bacterial pathogens. Clostridioides difficile is an important enteropathogen that causes potentially fatal intestinal inflammation. Knowledge about DNA replication in this organism is limited and no data is available on the very first steps of DNA replication. Here, we use a combination of in silico predictions and in vitro experiments to demonstrate that C. difficile employs a bipartite origin of replication that shows DnaA-dependent melting at oriC2, located in the dnaA-dnaN intergenic region. Analysis of putative origins of replication in different clostridia suggests that the main features of the origin architecture are conserved. This study is the first to characterize aspects of the origin region of C. difficile and contributes to our understanding of the initiation of DNA replication in clostridia.

18.
Sci Rep ; 10(1): 6727, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317695

ABSTRACT

The biology of bacterial cells is, in general, based on information encoded on circular chromosomes. Regulation of chromosome replication is an essential process that mostly takes place at the origin of replication (oriC), a locus unique per chromosome. Identification of high numbers of oriC is a prerequisite for systematic studies that could lead to insights into oriC functioning as well as the identification of novel drug targets for antibiotic development. Current methods for identifying oriC sequences rely on chromosome-wide nucleotide disparities and are therefore limited to fully sequenced genomes, leaving a large number of genomic fragments unstudied. Here, we present gammaBOriS (Gammaproteobacterial oriC Searcher), which identifies oriC sequences on gammaproteobacterial chromosomal fragments. It does so by employing motif-based machine learning methods. Using gammaBOriS, we created BOriS DB, which currently contains 25,827 gammaproteobacterial oriC sequences from 1,217 species, thus making it the largest available database for oriC sequences to date. Furthermore, we present gammaBOriTax, a machine-learning based approach for taxonomic classification of oriC sequences, which was trained on the sequences in BOriS DB. Finally, we extracted the motifs relevant for identification and classification decisions of the models. Our results suggest that machine learning sequence classification approaches can offer great support in functional motif identification.


Subject(s)
Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Machine Learning , Nucleotide Motifs/genetics , Replication Origin/genetics , Software , Base Sequence , Consensus Sequence/genetics , Models, Genetic , Phylogeny
19.
Blood ; 135(21): 1870-1881, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32157281

ABSTRACT

Despite advances in T-cell immunotherapy against Epstein-Barr virus (EBV)-infected lymphomas that express the full EBV latency III program, a critical barrier has been that most EBV+ lymphomas express the latency I program, in which the single Epstein-Barr nuclear antigen (EBNA1) is produced. EBNA1 is poorly immunogenic, enabling tumors to evade immune responses. Using a high-throughput screen, we identified decitabine as a potent inducer of immunogenic EBV antigens, including LMP1, EBNA2, and EBNA3C. Induction occurs at low doses and persists after removal of decitabine. Decitabine treatment of latency I EBV+ Burkitt lymphoma (BL) sensitized cells to lysis by EBV-specific cytotoxic T cells (EBV-CTLs). In latency I BL xenografts, decitabine followed by EBV-CTLs results in T-cell homing to tumors and inhibition of tumor growth. Collectively, these results identify key epigenetic factors required for latency restriction and highlight a novel therapeutic approach to sensitize EBV+ lymphomas to immunotherapy.


Subject(s)
Burkitt Lymphoma/therapy , Decitabine/pharmacology , Epigenesis, Genetic , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human/isolation & purification , T-Lymphocytes, Cytotoxic/immunology , Viral Proteins/antagonists & inhibitors , Animals , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Burkitt Lymphoma/genetics , Burkitt Lymphoma/immunology , Burkitt Lymphoma/virology , Cell Proliferation , Epstein-Barr Virus Infections/virology , Humans , Immunotherapy , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured , Viral Proteins/genetics , Viral Proteins/metabolism , Xenograft Model Antitumor Assays
20.
Microbiology (Reading) ; 165(12): 1365-1375, 2019 12.
Article in English | MEDLINE | ID: mdl-31592764

ABSTRACT

DNA replication is controlled mostly at the initiation step. In bacteria, replication of the chromosome starts at a single origin of replication called oriC. The initiator protein, DnaA, binds to specific sequences (DnaA boxes) within oriC and assembles into a filament that promotes DNA double helix opening within the DNA unwinding element (DUE). This process has been thoroughly examined in model bacteria, including Escherichia coli and Bacillus subtilis, but we have a relatively limited understanding of chromosomal replication initiation in other species. Here, we reveal new details of DNA replication initiation in Streptomyces, a group of Gram-positive soil bacteria that possesses a long linear (8-10 Mbps) and GC-rich chromosome with a centrally positioned oriC. We used comprehensive in silico, in vitro and in vivo analyses to better characterize the structure of Streptomyces oriC. We identified 14 DnaA-binding motifs and determined the consensus sequence of the DnaA box. Unexpectedly, our in silico analysis using the WebSIDD algorithm revealed the presence of two putative Streptomyces DUEs (DUE1 and DUE2) located very near one another toward the 5' end of the oriC region. In vitro P1 nuclease assay revealed that DNA unwinding occurs at both of the proposed sites, but using an in vivo replication initiation point mapping, we were able to confirm only one of them (DUE2). The previously observed transcriptional activity of the Streptomyces oriC region may help explain the current results. We speculate that transcription itself could modulate oriC activity in Streptomyces by determining whether DNA unwinding occurs at DUE1 or DUE2.


Subject(s)
DNA, Bacterial/metabolism , DNA, Superhelical/metabolism , Replication Origin/genetics , Streptomyces/genetics , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Chromosomes, Bacterial/genetics , Consensus Sequence , DNA Replication , DNA, Bacterial/chemistry , DNA, Superhelical/chemistry , DNA-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...