Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 151: 343-348, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30616046

ABSTRACT

Chloroethenes belong to the most widely distributed groundwater contaminants. Since 2014, it has been known that trichloroethene (TCE) can be degraded aerobically and metabolically as growth substrate by a mixed bacterial enrichment culture (named SF culture). In this study, the degradation capabilities under a range of field-relevant conditions were investigated in fixed-bed reactors as well as in batch experiments. Aerobic metabolic TCE degradation was stable over the long term, with degradation optima at 22 °C and pH 7. Degradation of up to 400 µM TCE was observed. The longest starvation period after which degradation of TCE was regained was 112 days. The possible co-contaminants perchloroethene, trans-1,2-dichloroethene, and cis-1,2-dichloroethene did not inhibit TCE degradation, even though they were not degraded themselves. The presence of equimolar amounts of 1,1-dichloroethene and vinyl chloride inhibited TCE degradation. Experiments with groundwater from different chloroethene-contaminated field sites proved the potential of the SF culture for bioaugmentation. Thus, aerobic metabolic TCE degradation should be considered as a promising method for the bioremediation of field sites with TCE as the main contaminant.


Subject(s)
Groundwater , Trichloroethylene , Vinyl Chloride , Biodegradation, Environmental
2.
Geobiology ; 16(4): 353-368, 2018 07.
Article in English | MEDLINE | ID: mdl-29885273

ABSTRACT

As a consequence of Earth's surface oxygenation, ocean geochemistry changed from ferruginous (iron(II)-rich) into more complex ferro-euxinic (iron(II)-sulphide-rich) conditions during the Paleoproterozoic. This transition must have had profound implications for the Proterozoic microbial community that existed within the ocean water and bottom sediment; in particular, iron-oxidizing bacteria likely had to compete with emerging sulphur-metabolizers. However, the nature of their coexistence and interaction remains speculative. Here, we present geochemical and microbiological data from the Arvadi Spring in the eastern Swiss Alps, a modern model habitat for ferro-euxinic transition zones in late Archean and Proterozoic oceans during high-oxygen intervals, which enables us to reconstruct the microbial community structure in respective settings for this geological era. The spring water is oxygen-saturated but still contains relatively elevated concentrations of dissolved iron(II) (17.2 ± 2.8 µM) and sulphide (2.5 ± 0.2 µM) with simultaneously high concentrations of sulphate (8.3 ± 0.04 mM). Solids consisting of quartz, calcite, dolomite and iron(III) oxyhydroxide minerals as well as sulphur-containing particles, presumably elemental S0 , cover the spring sediment. Cultivation-based most probable number counts revealed microaerophilic iron(II)-oxidizers and sulphide-oxidizers to represent the largest fraction of iron- and sulphur-metabolizers in the spring, coexisting with less abundant iron(III)-reducers, sulphate-reducers and phototrophic and nitrate-reducing iron(II)-oxidizers. 16S rRNA gene 454 pyrosequencing showed sulphide-oxidizing Thiothrix species to be the dominating genus, supporting the results from our cultivation-based assessment. Collectively, our results suggest that anaerobic and microaerophilic iron- and sulphur-metabolizers could have coexisted in oxygenated ferro-sulphidic transition zones of late Archean and Proterozoic oceans, where they would have sustained continuous cycling of iron and sulphur compounds.


Subject(s)
Biota , Ecosystem , Iron/metabolism , Natural Springs/microbiology , Sulfur/metabolism , Aerobiosis , Anaerobiosis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Natural Springs/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Switzerland
3.
Sci Rep ; 6: 28958, 2016 06 29.
Article in English | MEDLINE | ID: mdl-27353292

ABSTRACT

In soils halogens (fluorine, chlorine, bromine, iodine) are cycled through the transformation of inorganic halides into organohalogen compounds and vice versa. There is evidence that these reactions are microbially driven but the key enzymes and groups of microorganisms involved are largely unknown. Our aim was to uncover the diversity, abundance and distribution of genes encoding for halogenating and dehalogenating enzymes in a German forest soil by shotgun metagenomic sequencing. Metagenomic libraries of three soil horizons revealed the presence of genera known to be involved in halogenation and dehalogenation processes such as Bradyrhizobium or Pseudomonas. We detected a so far unknown diversity of genes encoding for (de)halogenating enzymes in the soil metagenome including specific and unspecific halogenases as well as metabolic and cometabolic dehalogenases. Genes for non-heme, no-metal chloroperoxidases and haloalkane dehalogenases were the most abundant halogenase and dehalogenase genes, respectively. The high diversity and abundance of (de)halogenating enzymes suggests a strong microbial contribution to natural halogen cycling. This was also confirmed in microcosm experiments in which we quantified the biotic formation of chloroform and bromoform. Knowledge on microorganisms and genes that catalyze (de)halogenation reactions is critical because they are highly relevant to industrial biotechnologies and bioremediation applications.


Subject(s)
Bacteria/classification , Bacterial Proteins/genetics , Halogens/metabolism , Metagenomics/methods , Bacteria/enzymology , Bacteria/genetics , Germany , Metabolic Networks and Pathways , Sequence Analysis, DNA/methods , Soil/chemistry , Soil Microbiology
4.
Sci Total Environ ; 562: 379-390, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27100017

ABSTRACT

Soil biochar amendment has been described as a promising tool to improve soil quality, sequester carbon, and mitigate nitrous oxide (N2O) emissions. N2O is a potent greenhouse gas. The main sources of N2O in soils are microbially-mediated nitrogen transformation processes such as nitrification and denitrification. While previous studies have focused on the link between N2O emission mitigation and the abundance and activity of N2O-reducing microorganisms in biochar-amended soils, the impact of biochar on the taxonomic composition of the nosZ gene carrying soil microbial community has not been subject of systematic study to date. We used 454 pyrosequencing in order to study the microbial diversity in biochar-amended and biochar-free soil microcosms. We sequenced bacterial 16S rRNA gene amplicons as well as fragments of common (typical) nosZ genes and the recently described 'atypical' nosZ genes. The aim was to describe biochar-induced shifts in general bacterial community diversity and taxonomic variations among the nosZ gene containing N2O-reducing microbial communities. While soil biochar amendment significantly altered the 16S rRNA gene-based community composition and structure, it also led to the development of distinct functional traits capable of N2O reduction containing typical and atypical nosZ genes related to nosZ genes found in Pseudomonas stutzeri and Pedobacter saltans, respectively. Our results showed that biochar amendment can affect the relative abundance and taxonomic composition of N2O-reducing functional microbial traits in soil. Thus these findings broaden our knowledge on the impact of biochar on soil microbial community composition and nitrogen cycling.


Subject(s)
Charcoal/chemistry , Nitrogen Cycle , Nitrogen Dioxide/metabolism , Soil Microbiology , Soil/chemistry , Denitrification , Nitrification , Nitrogen Dioxide/analysis , RNA, Ribosomal, 16S
5.
Chemosphere ; 138: 47-59, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26037816

ABSTRACT

Household sand filters are used in rural areas of Vietnam to remove As, Fe, and Mn from groundwater for drinking water purposes. Currently, it is unknown what role microbial processes play in mineral oxide formation and As removal during water filtration. We performed most probable number counts to quantify the abundance of physiological groups of microorganisms capable of catalyzing Fe- and Mn-redox transformation processes in a household sand filter. We found up to 10(4) cells g(-1) dry sand of nitrate-reducing Fe(II)-oxidizing bacteria and Fe(III)-reducing bacteria, and no microaerophilic Fe(II)-oxidizing bacteria, but up to 10(6) cells g(-1) dry sand Mn-oxidizing bacteria. 16S rRNA gene amplicon sequencing confirmed MPN counts insofar as only low abundances of known taxa capable of performing Fe- and Mn-redox transformations were detected. Instead the microbial community on the sand filter was dominated by nitrifying microorganisms, e.g. Nitrospira, Nitrosomonadales, and an archaeal OTU affiliated to Candidatus Nitrososphaera. Quantitative PCR for Nitrospira and ammonia monooxygenase genes agreed with DNA sequencing results underlining the numerical importance of nitrifiers in the sand filter. Based on our analysis of the microbial community composition and previous studies on the solid phase chemistry of sand filters we conclude that abiotic Fe(II) oxidation processes prevail over biotic Fe(II) oxidation on the filter. Yet, Mn-oxidizing bacteria play an important role for Mn(II) oxidation and Mn(III/IV) oxide precipitation in a distinct layer of the sand filter. The formation of Mn(III/IV) oxides contributes to abiotic As(III) oxidation and immobilization of As(V) by sorption to Fe(III) (oxyhydr)oxides.


Subject(s)
Arsenic/isolation & purification , Filtration/instrumentation , Groundwater , Iron/isolation & purification , Manganese/isolation & purification , Water Pollutants, Chemical/isolation & purification , Archaea/genetics , Archaea/growth & development , Arsenic/analysis , Biomass , Drinking Water/analysis , Drinking Water/standards , Family Characteristics , Ferric Compounds/chemistry , Groundwater/chemistry , Groundwater/microbiology , Iron/analysis , Manganese/analysis , Nitrosomonadaceae/genetics , Nitrosomonadaceae/growth & development , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Silicon Dioxide/chemistry , Vietnam , Water Pollutants, Chemical/analysis
6.
Appl Environ Microbiol ; 81(6): 2173-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25595759

ABSTRACT

The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a "native" and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, "Candidatus Chloracidobacterium") of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy.


Subject(s)
Arabidopsis/metabolism , Arabidopsis/microbiology , Bacteria/classification , Biota , Cadmium/metabolism , Soil Microbiology , Zinc/metabolism , Bacteria/genetics , Bacteria/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Molecular Sequence Data , Plant Roots/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...