Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Genet Metab ; 131(1-2): 23-37, 2020.
Article in English | MEDLINE | ID: mdl-33093005

ABSTRACT

The nutrition management guideline for very-long chain acyl-CoA dehydrogenase deficiency (VLCAD) is the fourth in a series of web-based guidelines focusing on the diet treatment for inherited metabolic disorders and follows previous publication of guidelines for maple syrup urine disease (2014), phenylketonuria (2016) and propionic acidemia (2019). The purpose of this guideline is to establish harmonization in the treatment and monitoring of individuals with VLCAD of all ages in order to improve clinical outcomes. Six research questions were identified to support guideline development on: nutrition recommendations for the healthy individual, illness management, supplementation, monitoring, physical activity and management during pregnancy. This report describes the methodology used in its development including review, critical appraisal and abstraction of peer-reviewed studies and unpublished practice literature; expert input through two Delphi surveys and a nominal group process; and external review from metabolic physicians and dietitians. It includes the summary statements of the nutrition management recommendations for each research question, followed by a standardized rating based on the strength of the evidence. Online, open access of the full published guideline allows utilization by health care providers, researchers and collaborators who advise, advocate and care for individuals with VLCAD and their families and can be accessed from the Genetic Metabolic Dietitians International (https://GMDI.org) and Southeast Regional Genetics Network (https://southeastgenetics.org/ngp) websites.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/genetics , Congenital Bone Marrow Failure Syndromes/diet therapy , Lipid Metabolism, Inborn Errors/diet therapy , Mitochondrial Diseases/diet therapy , Muscular Diseases/diet therapy , Nutrition Policy , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Congenital Bone Marrow Failure Syndromes/genetics , Congenital Bone Marrow Failure Syndromes/metabolism , Congenital Bone Marrow Failure Syndromes/pathology , Female , Guidelines as Topic , Humans , Lipid Metabolism, Inborn Errors/genetics , Lipid Metabolism, Inborn Errors/metabolism , Lipid Metabolism, Inborn Errors/pathology , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Muscular Diseases/genetics , Muscular Diseases/metabolism , Muscular Diseases/pathology , Nutrition Therapy , Pregnancy
2.
Appl Environ Microbiol ; 84(21)2018 11 01.
Article in English | MEDLINE | ID: mdl-30143511

ABSTRACT

Microorganisms are predominantly organized in biofilms, where cells live in dense communities and are more resistant to external stresses than are their planktonic counterparts. With in vitro experiments, the susceptibility of Candida albicans biofilms to a nonthermal plasma treatment (plasma source, kINPen09) in terms of growth, survival, and cell viability was investigated. C. albicans strain SC5314 (ATCC MYA-2876) was plasma treated for different time periods (30 s, 60 s, 120 s, 180 s, 300 s). The results of the experiments, encompassing CFU, fluorescence Live/Dead, and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT) assays, revealed a negative influence of the plasma treatment on the proliferation ability, vitality, and metabolism of C. albicans biofilms, respectively. Morphological analysis of plasma-treated biofilms using atomic force microscopy supported the indications for lethal plasma effects concomitant with membrane disruptions and the loss of intracellular fluid. Yielding controversial results compared to those of other publications, fluorescence and confocal laser scanning microscopic inspection of plasma-treated biofilms indicated that an inactivation of cells appeared mainly on the bottom of the biofilms. If this inactivation leads to a detachment of the biofilms from the overgrown surface, it might offer completely new approaches in the plasma treatment of biofilms. Because of plasma's biochemical-mechanical mode of action, resistance of microbial cells against plasma is unknown at this state of research.IMPORTANCE Microbial communities are an increasing problem in medicine but also in industry. Thus, an efficient and rapid removal of biofilms is becoming increasingly important. With the aid of the kINPen09, a radiofrequency plasma jet (RFPJ) instrument, decisive new findings on the effects of plasma on C. albicans biofilms were obtained. This work showed that the inactivation of biofilms takes place mainly on the bottom, which in turn offers new possibilities for the removal of biofilms by other strategies, e.g., mechanical treatment. This result demonstrated that nonthermal atmospheric pressure plasma is well suited for biofilm decontamination.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Plasma Gases/pharmacology , Candida albicans/growth & development , Candida albicans/physiology , Microbial Sensitivity Tests , Microbial Viability/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...