Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(9): e2201598121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38346209

ABSTRACT

Mechanical grasping and holding devices depend upon a firm and controlled grip. The possibility to improve this gripping performance is severely limited by the need for miniaturization in many applications, such as robotics, microassembly, or surgery. In this paper, we show how this gripping can be improved in one application (the endoscopic needle holder) by understanding and imitating the design principles that evolution has selected to make the mandibles of an ant a powerful natural gripping device. State-of-the-art kinematic, morphological, and engineering approaches show that the ant, in contrast to other insects, has considerable movement within the articulation and the jaw´s rotational axis. We derived three major evolutionary design principles from the ant's biting apparatus: 1) a mobile joint axis, 2) a tilted orientation of the mandibular axis, and 3) force transmission of the adductor muscle to the tip of the mandible. Application of these three principles to a commercially available endoscopic needle holder resulted in calculated force amplification up to 296% and an experimentally measured one up to 433%. This reduced the amount of translations and rotations of the needle, compared to the needle's original design, while retaining its size or outer shape. This study serves as just one example showing how bioengineers might find elegant solutions to their design problems by closely observing the natural world.


Subject(s)
Ants , Mandible , Animals , Mandible/anatomy & histology , Needles , Ants/physiology , Biomechanical Phenomena
2.
PeerJ ; 10: e12470, 2022.
Article in English | MEDLINE | ID: mdl-35462775

ABSTRACT

Background: Cockroaches are usually typical omnivorous detritivores and their cephalic morphology is considered to be ancestral in various aspects. Thus, several studies addressed the morphology and function of the blattodean head, and the cockroach usually serves as a model for standard mouthparts in text books. However, so far only two of the three major lineages of Blattodea have been studied and no detailed information for the head of any Corydioidea was available. The present study closes this gap by providing a detailed morphological description of the head of Ergaula capucina, studying some important functional parameters of the mandible and discussing it in a phylogenetic framework. Methods: The cephalic morphology of Ergaula studied in detail using a broad set of different techniques including digital microscopy, µ-computed tomography, and 3-dimensional reconstructions. Concerning the functional morphology of the mandible, we compared the volume and effective cross sections of the eight compartments of the primary mandibular adductor muscle for Ergaula, Blattella germanica, and Salganea rossi and measured the mechanical advantage, i.e., the force transmission ratio for all teeth of the mandible of Ergaula. Results: The head capsule of Ergaula is characterized by a strong sexual dimorphism and typical orthopteran mouthparts. It resembles the head capsule of other roaches in several respects and confirms oesotendons, the reduction of the mesal occelus, and bipartite M. verticopharyngealis and M. hypopharyngosalivaris as blattodean apomorphies. But it also shows some unique adaptations. It is the first described cockroach that lacks the dorsal tentorial arms which has various consequences for the cephalic musculature. On the maxillary lacinia, Ergaula is the first described blattodean to show strong and blunt setae instead of a lacinula, which might be homologues to the dentisetae of dragonflies and mayflies. Like other corydiid roaches that inhabit xeric areas, Ergaula has an atmospheric water-vapor absorption mechanism that includes a gland and a ductus on the epipharnyx and bladders on the hypopharynx. The mandibular adductor is in cockroaches asymmetric, a pattern not found in termites, mantids, or other closely related insects.


Subject(s)
Blattellidae , Ephemeroptera , Odonata , Animals , Phylogeny , Insecta
3.
J Theor Biol ; 523: 110714, 2021 08 21.
Article in English | MEDLINE | ID: mdl-33862096

ABSTRACT

The maximum running speed of legged animals is one evident factor for evolutionary selection-for predators and prey. Therefore, it has been studied across the entire size range of animals, from the smallest mites to the largest elephants, and even beyond to extinct dinosaurs. A recent analysis of the relation between animal mass (size) and maximum running speed showed that there seems to be an optimal range of body masses in which the highest terrestrial running speeds occur. However, the conclusion drawn from that analysis-namely, that maximum speed is limited by the fatigue of white muscle fibres in the acceleration of the body mass to some theoretically possible maximum speed-was based on coarse reasoning on metabolic grounds, which neglected important biomechanical factors and basic muscle-metabolic parameters. Here, we propose a generic biomechanical model to investigate the allometry of the maximum speed of legged running. The model incorporates biomechanically important concepts: the ground reaction force being counteracted by air drag, the leg with its gearing of both a muscle into a leg length change and the muscle into the ground reaction force, as well as the maximum muscle contraction velocity, which includes muscle-tendon dynamics, and the muscle inertia-with all of them scaling with body mass. Put together, these concepts' characteristics and their interactions provide a mechanistic explanation for the allometry of maximum legged running speed. This accompanies the offering of an explanation for the empirically found, overall maximum in speed: In animals bigger than a cheetah or pronghorn, the time that any leg-extending muscle needs to settle, starting from being isometric at about midstance, at the concentric contraction speed required for running at highest speeds becomes too long to be attainable within the time period of a leg moving from midstance to lift-off. Based on our biomechanical model, we, thus, suggest considering the overall speed maximum to indicate muscle inertia being functionally significant in animal locomotion. Furthermore, the model renders possible insights into biological design principles such as differences in the leg concept between cats and spiders, and the relevance of multi-leg (mammals: four, insects: six, spiders: eight) body designs and emerging gaits. Moreover, we expose a completely new consideration regarding the muscles' metabolic energy consumption, both during acceleration to maximum speed and in steady-state locomotion.


Subject(s)
Running , Animals , Biomechanical Phenomena , Cats , Gait , Locomotion , Muscle, Skeletal
4.
Article in English | MEDLINE | ID: mdl-33459819

ABSTRACT

The measurement of cuticular strain during locomotion using foil strain gauges provides information both on the loads of the exoskeleton bears and the adaptive value of the specific location of natural strain detectors (slit sense organs). Here, we critically review available literature. In tethered animals, by applying loads to the metatarsus tip, strain and mechanical sensitivity (S = strain/load) induced at various sites in the tibia were determined. The loci of the lyriform organs close to the tibia-metatarsus joint did not stand out by high strain. The strains induced at various sites during free locomotion can be interpreted based on S and, beyond the joint region, on beam theory. Spiders avoided laterad loading of the tibia-metatarsus joint during slow locomotion. Balancing body weight, joint flexors caused compressive strain at the posterior and dorsal tibia. While climbing upside down strain measurements indicate strong flexor activity. In future studies, a precise calculation and quantitative determination of strain at the sites of the lyriform organs will profit from more detailed data on the overall strain distribution, morphology, and material properties. The values and caveats of the strain gauge technology, the only one applicable to freely moving spiders, are discussed.


Subject(s)
Animal Shells/physiology , Biomechanical Phenomena/physiology , Extremities/physiology , Locomotion/physiology , Spiders/physiology , Stress, Mechanical , Animals , Virtues
5.
Front Bioeng Biotechnol ; 9: 769684, 2021.
Article in English | MEDLINE | ID: mdl-35186911

ABSTRACT

Most terrestrial animals move with a specific number of propulsive legs, which differs between clades. The reasons for these differences are often unknown and rarely queried, despite the underlying mechanisms being indispensable for understanding the evolution of multilegged locomotor systems in the animal kingdom and the development of swiftly moving robots. Moreover, when speeding up, a range of species change their number of propulsive legs. The reasons for this behaviour have proven equally elusive. In animals and robots, the number of propulsive legs also has a decisive impact on the movement dynamics of the centre of mass. Here, I use the leg force interference model to elucidate these issues by introducing gradually declining ground reaction forces in locomotor apparatuses with varying numbers of leg pairs in a first numeric approach dealing with these measures' impact on locomotion dynamics. The effects caused by the examined changes in ground reaction forces and timing thereof follow a continuum. However, the transition from quadrupedal to a bipedal locomotor system deviates from those between multilegged systems with different numbers of leg pairs. Only in quadrupeds do reduced ground reaction forces beneath one leg pair result in increased reliability of vertical body oscillations and therefore increased energy efficiency and dynamic stability of locomotion.

6.
Arthropod Struct Dev ; 59: 100983, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33160205

ABSTRACT

Arthropods are the most diverse clade on earth with regard to both species number and variability of body plans. Their general body plan is characterised by variable numbers of legs, and many-legged locomotion is an essential aspect of many aquatic and terrestrial arthropod species. Moreover, arthropods belong to the first groups of animals to colonise subaerial habitats, and they did so repeatedly and independently in a couple of clades. Those arthropod clades that colonised land habitats were equipped with highly variable body plans and locomotor apparatuses. Proceeding from their respective specific anatomies, they were challenged with strongly changing environmental conditions as well as altered physical and physiological constraints. This review explores the transitions from aquatic to terrestrial habitats across the different arthropod body plans and explains the major mechanisms and principles that constrain design and function of a range of locomotor apparatuses. Important aspects of movement physiology addressed here include the effects of different numbers of legs, different body sizes, miniaturisation and simplification of body plans and different ratios of inertial and damping forces. The article's focus is on continuous legged locomotion, but related ecological and behavioural aspects are also taken into account.


Subject(s)
Arthropods/anatomy & histology , Arthropods/physiology , Biological Evolution , Ecosystem , Locomotion , Animals , Biomechanical Phenomena
8.
Sci Adv ; 4(9): eaat3721, 2018 09.
Article in English | MEDLINE | ID: mdl-30191178

ABSTRACT

The examination of gaits and gait changes has been the focus of movement physiology and legged robot engineering since the first emergence of the fields. While most examinations have focused on bipedal and quadrupedal designs, many robotic implementations rely on the higher static stability of three or more pairs of legs. Thus far, however, the effect of number of pairs of legs on locomotion dynamics has not been examined. Accordingly, the present approach aims to extend available theory to polypedal designs and examines how the number of active walking legs affects body dynamics when combined with changing duty factors and phase relations. The model shows that ground force interference of higher numbers of active pairs of walking legs can prevent effective use of bouncing gaits, such as trot, and their associated advantages, such as energy efficiency, because significantly higher degrees of leg synchronization are required. It also shows that small changes in the leg coordination pattern have a much higher impact on the center-of-mass dynamics in locomotor systems with many legs than in those with fewer legs. In this way, the model reveals coordinative constraints for specific gaits facilitating the assessment of animal locomotion and economization of robotic locomotion.


Subject(s)
Hindlimb/physiology , Models, Biological , Animals , Biomechanical Phenomena , Body Weight , Gait/physiology
9.
Front Zool ; 14: 54, 2017.
Article in English | MEDLINE | ID: mdl-29225659

ABSTRACT

BACKGROUND: Many legged animals change gaits when increasing speed. In insects, only one gait change has been documented so far, from slow walking to fast running, which is characterised by an alternating tripod. Studies on some fast-running insects suggested a further gait change at higher running speeds. Apart from speed, insect gaits and leg co-ordination have been shown to be influenced by substrate properties, but the detailed effects of speed and substrate on gait changes are still unclear. Here we investigate high-speed locomotion and gait changes of the cockroach Nauphoeta cinerea, on two substrates of different slipperiness. RESULTS: Analyses of leg co-ordination and body oscillations for straight and steady escape runs revealed that at high speeds, blaberid cockroaches changed from an alternating tripod to a rather metachronal gait, which to our knowledge, has not been described before for terrestrial arthropods. Despite low duty factors, this new gait is characterised by low vertical amplitudes of the centre of mass (COM), low vertical accelerations and presumably reduced total vertical peak forces. However, lateral amplitudes and accelerations were higher in the faster gait with reduced leg synchronisation than in the tripod gait with distinct leg synchronisation. CONCLUSIONS: Temporally distributed leg force application as resulting from metachronal leg coordination at high running speeds may be particularly useful in animals with limited capabilities for elastic energy storage within the legs, as energy efficiency can be increased without the need for elasticity in the legs. It may also facilitate locomotion on slippery surfaces, which usually reduce leg force transmission to the ground. Moreover, increased temporal overlap of the stance phases of the legs likely improves locomotion control, which might result in a higher dynamic stability.

10.
PLoS One ; 10(11): e0141226, 2015.
Article in English | MEDLINE | ID: mdl-26559671

ABSTRACT

Knowing the functionality and capabilities of masticatory apparatuses is essential for the ecological classification of jawed organisms. Nevertheless insects, especially with their outstanding high species number providing an overwhelming morphological diversity, are notoriously underexplored with respect to maximum bite forces and their dependency on the mandible opening angles. Aiming for a general understanding of insect biting, we examined the generalist feeding cockroach Periplaneta americana, characterized by its primitive chewing mouth parts. We measured active isometric bite forces and passive forces caused by joint resistance over the entire mandibular range with a custom-built 2D force transducer. The opening angle of the mandibles was quantified by using a video system. With respect to the effective mechanical advantage of the mandibles and the cross-section areas, we calculated the forces exerted by the mandible closer muscles and the corresponding muscle stress values. Comparisons with the scarce data available revealed close similarities of the cockroaches' mandible closer stress values (58 N/cm2) to that of smaller specialist carnivorous ground beetles, but strikingly higher values than in larger stag beetles. In contrast to available datasets our results imply the activity of faster and slower muscle fibres, with the latter becoming active only when the animals chew on tough material which requires repetitive, hard biting. Under such circumstances the coactivity of fast and slow fibres provides a force boost which is not available during short-term activities, since long latencies prevent a specific effective employment of the slow fibres in this case.


Subject(s)
Bite Force , Mandible/physiology , Muscle, Skeletal/physiology , Periplaneta/physiology , Animals , Biomechanical Phenomena , Finite Element Analysis , Mandible/anatomy & histology , Mastication/physiology , Models, Biological , Muscle Fibers, Skeletal/physiology , Muscle Strength/physiology , Muscle, Skeletal/anatomy & histology , Periplaneta/anatomy & histology , Videotape Recording
11.
PLoS One ; 8(6): e65788, 2013.
Article in English | MEDLINE | ID: mdl-23805189

ABSTRACT

Spiders are an old yet very successful predatory group of arthropods. Their locomotor system differs from those of most other arthropods by the lack of extensor muscles in two major leg joints. Though specific functional characteristics can be expected regarding the locomotion dynamics of spiders, this aspect of movement physiology has been only scarcely examined so far. This study presents extensive analyses of a large dataset concerning global kinematics and the implications for dynamics of adult female specimens of the large Central American spider Cupiennius salei (Keyserling). The experiments covered the entire speed-range of straight runs at constant speeds. The analyses revealed specific characteristics of velocity dependent changes in the movements of the individual legs, as well as in the translational and rotational degrees of freedom of both the centre of mass and the body. In contrast to many other fast moving arthropods, C. salei avoid vertical fluctuations of their centre of mass during fast locomotion. Accordingly, aerial phases were not observed here. This behaviour is most likely a consequence of optimising energy expenditure with regard to the specific requirements of spiders' leg anatomy. A strong synchronisation of two alternating sets of legs appears to play only a minor role in the locomotion of large spiders. Reduced frequency and low centre of mass amplitudes as well as low angular changes of the body axes, in turn, seems to be the result of relatively low leg coordination.


Subject(s)
Locomotion/physiology , Models, Biological , Spiders/physiology , Animals , Biomechanical Phenomena , Spiders/anatomy & histology
12.
J Exp Biol ; 215(Pt 4): 578-83, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22279064

ABSTRACT

Unlike most other arthropods, spiders have no extensor muscles in major leg joints. Therefore, hydraulic pressure generated in the prosoma provides leg extension. For decades, this mechanism was held responsible for the generation of the majority of the ground reaction forces, particularly in the hind legs. During propulsion, the front leg pairs must shorten whereas the hind legs have to be extended. Assuming that hind legs are essentially driven by hydraulics, their force vectors must pass the leg joints ventrally. However, at least in accelerated escape manoeuvres, we show here for the large cursorial spider species Ancylometes concolor that these force vectors, when projected into the leg plane, pass all leg joints dorsally. This indicates a reduced impact of the hydraulic mechanism on the generation of ground reaction forces. Although hydraulic leg extension still modulates their direction, the observed steep force vectors at the hind legs indicate a strong activity of flexors in the proximal joint complex that push the legs against the substrate. Consequently, the muscular mechanisms are dominant at least in the hind legs of large spiders.


Subject(s)
Extremities/physiology , Muscles/physiology , Spiders/physiology , Walking/physiology , Animals , Biomechanical Phenomena , Joints , Pressure
13.
J Theor Biol ; 293: 82-6, 2012 Jan 21.
Article in English | MEDLINE | ID: mdl-22019507

ABSTRACT

Usually, a climbing cockroach attaches with three legs to a substrate. According to a recent model study, pulling forces underneath the front leg are required at some critical slope angle in upward locomotion. This critical angle depends on the animal's anatomy and leg positioning. In this study, we asked especially how this critical angle can be biased by one parameter that may be controlled during climbing: the body height above the substrate. We found that the typical ratio between body height and length (0.2) adopted by cockroaches is slightly higher than the very ratio (0.15) at which the critical slope angle can be increased most strongly for a given decrease in body height. In other words, it is likely that a geometrical body design of cockroaches evolved, which enables a delicate reduction in body height perfectly suitable for preventing the danger of slipping or even falling over rearwards at steepening slopes (approaching the vertical). In that sense, our model predicts, not just for hexapods but rather for any three-point climber, that taking up a low ratio of body height to the distance between the foremost and the hindmost attachment point (very crouched posture) makes body height a good parameter for climbing control.


Subject(s)
Cockroaches/physiology , Locomotion/physiology , Models, Biological , Animals , Biomechanical Phenomena , Biometry/methods , Cockroaches/anatomy & histology , Extremities/physiology , Posture/physiology
14.
Article in English | MEDLINE | ID: mdl-20405130

ABSTRACT

Spiders use hemolymph pressure to extend their legs. This mechanism should be challenged when required to rapidly generate forces during jumping, particularly in large spiders. However, effective use of leg muscles could facilitate rapid jumping. To quantify the contributions of different legs and leg joints, we investigated jumping kinematics by high-speed video recording. We observed two different types of jumps following a disturbance: prepared and unprepared jumps. In unprepared jumps, the animals could jump in any direction away from the disturbance. The remarkable directional flexibility was achieved by flexing the legs on the leading side and extending them on the trailing side. This behaviour is only possible for approximately radial-symmetric leg postures, where each leg can fulfil similar functions. In prepared jumps, the spiders showed characteristic leg positioning and the jumps were directed anteriorly. Immediately after a preliminary countermovement in which the centre of mass was moved backwards and downwards, the jump was executed by extending first the fourth and then the second leg pair. This sequence provided effective acceleration to the centre of mass. At least in the fourth legs, the hydraulic and the muscular mechanism seem to interact to generate ground reaction forces.


Subject(s)
Locomotion/physiology , Lower Extremity/physiology , Sense Organs/physiology , Spiders/physiology , Acceleration , Animals , Biomechanical Phenomena , Body Mass Index , Models, Biological , Muscles/physiology , Orientation/physiology , Physical Stimulation/methods , Posture , Time Factors , Video Recording
15.
J Comp Physiol B ; 180(2): 199-209, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19756652

ABSTRACT

Hunting spiders are well adapted to fast locomotion. Space saving hydraulic leg extension enables leg segments, which consist almost soley of flexor muscles. As a result, the muscle cross sectional area is high despite slender legs. Considering these morphological features in context with the spider's segmented C-shaped legs, these specifics might influence the spider's muscle properties. Moreover, these properties have to be known for modeling of spider locomotion. Cupiennius salei (n = 5) were fixed in a metal frame allowing exclusive flexion of the tibia-metatarsus joint of the second leg (counted from anterior). Its flexing muscles were stimulated supramaximally using needle electrodes. Accounting for the joint geometry, the force-length and the force-velocity relationships were determined. The spider muscles produce 0.07 N cm maximum isometric moment (corresponding to 25 N/cm(2) maximum stress) at 160 degrees tibia-metatarsus joint angle. When overextended to the dorsal limit at approximately 200 degrees , the maximum isometric moments decrease to 72%, and, when flexed to the ventral hinge stop at 85 degrees , they drop to 11%. The force-velocity relation shows the typical hyperbolic shape. The mean maximum shortening velocity is 5.7 optimum muscle lengths per second and the mean curvature (a/F (iso)) of the Hill-function is 0.34. The spider muscle's properties which were determined are similar to those of other species acting as motors during locomotion (working range, curvature of Hill hyperbola, peak power at the preferred speeds), but they are relatively slow. In conjunction with the low mechanical advantage (muscle lever/load arm), the arrangement of three considerably actuated joints in series may nonetheless enable high locomotion velocities.


Subject(s)
Models, Biological , Spiders/physiology , Animals , Biomechanical Phenomena , Female , Joints/physiology , Locomotion/physiology , Muscles/physiology
16.
Article in English | MEDLINE | ID: mdl-19756648

ABSTRACT

Formicine ants are able to detect slopes in the substrates they crawl on. It was assumed that hair fields between the main segments of the body and between the proximal leg segments contribute to graviception which triggers a change of posture in response to substrate slopes. The sagittal kinematics of two ant species were investigated and compared on different slopes. Cataglyphis fortis, a North African desert ant, is well known for its extraordinary sense of orientation in texturally almost uniform habitats, while Formica pratensis, a common central-European species, primarily uses landmarks and pheromone traces for orientation. A comparison of these two species reveals differences in postural adaptations during inclined locomotion. Only minor slope-dependent angular adjustments were observed. The largest is a 25 degrees head rotation for Cataglyphis, even if the slope is changed by 150 degrees, suggesting dramatic changes in the field of vision. The trunk's pitch adjustment towards the increasing slope is low in both species. On all slopes Cataglyphis achieves higher running speeds than Formica and displays greater slope-dependent variation in body height. This indicates different strategies for coping with changing slopes. These specific aspects have to be reflected in the ants' respective mode of slope perception.


Subject(s)
Ants/physiology , Behavior, Animal/physiology , Biological Clocks/physiology , Locomotion/physiology , Spatial Behavior/physiology , Acclimatization/physiology , Animals , Biomechanical Phenomena , Environment , Gravity Sensing/physiology , Orientation
17.
J Exp Biol ; 212(Pt 15): 2426-35, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19617436

ABSTRACT

The biomechanics of running in small animals have remained poorly characterized because of the difficulty of recording three-dimensional ground reaction forces. Available techniques limit investigations to animals with a body mass above 1 g. Here we present, for the first time, single-leg ground reaction forces of ants (body mass 10 mg), measured with a custom-built miniature force plate. We investigated forces and high-speed kinematics for straight level runs (average speed: 8.4 cm s(-1)) of Formica polyctena workers. The major finding was that the time course of ground reaction forces strongly differed from previous observations of larger insects. Maximum vertical force was reached during the first third of the tripod contact phase. During this period the body was decelerated predominantly by the front legs. Subsequently, the front legs pulled and accelerated the body. This 'climbing' type of stride may be useful on the bumpy and unstable substrates that the animals face in their natural habitats, and may therefore also occur on level ground. Propulsive forces were generated predominantly by the front and hind legs. Dragging of the gaster on the substrate resulted in a breaking momentum, which was compensated by the legs. Future investigations will reveal, whether the identified pattern is due to specialization.


Subject(s)
Ants/physiology , Locomotion/physiology , Animals , Biomechanical Phenomena , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...