Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Atmos Res ; 102(3): 300-310, 2011 Nov.
Article in English | MEDLINE | ID: mdl-26412915

ABSTRACT

During three field campaigns spectral actinic flux was measured from 290-500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account.

2.
Int J Biometeorol ; 46(2): 95-104, 2002 May.
Article in English | MEDLINE | ID: mdl-12135205

ABSTRACT

Erythemal UV irradiance incident on a horizontal surface is not always the best way of estimating the real dose received by humans or animals. For this purpose knowledge of the irradiance incident on inclined planes is required. This study presents a physically accurate model for the calculation of erythemal UV on inclined planes. The influence of ground reflectivity and topography on erythemal UV on inclined planes is investigated as a function of solar zenith and azimuth angle. It is shown that including directional reflectivity does not substantially change the incident dose on inclined planes, the maximum deviation being 10%. The incident erythemal UV may, however, be much more influenced by the surrounding topography and by the direct/diffuse partitioning of the irradiance (which is a function of altitude). Maximum increases in erythemal UV of +57%, compared with the incident erythemal UV on a horizontal plane, were found when the sensor faced the sun with a mountain slope to the left and right of it and for very high altitudes.


Subject(s)
Erythema/etiology , Ultraviolet Rays/adverse effects , Animals , Humans , Models, Biological , Radiobiology , Surface Properties
3.
Appl Opt ; 39(21): 3592-603, 2000 Jul 20.
Article in English | MEDLINE | ID: mdl-18349930

ABSTRACT

The reflectivity of the 22 km x 24 km region surrounding Sonnblick Observatory near Salzburg, Austria (3104-m altitude, 47.05 degrees N, 12.95 degrees E), was calculated with a three-dimensional albedo model. The average albedo of the region was calculated at 305 and 380 nm for different solar zenith angles, ground reflectances, and solar azimuth angles. To determine geometrical effects, we first carried out the simulations without taking account of the effects of the atmosphere. The ratio to the reflectivity of a corresponding flat surface area (area with the same ground characteristics) was always less than 1 and showed a decrease with increasing solar zenith angle and with diminishing ground reflectance. Even when the ground reflectance was 100%, the average albedo was less than 1. The effect of the atmosphere was then taken into consideration in these calculations and was found to diminish the reflected components. This diminishing effect was compensated for, however, by the scattered irradiance. Finally, simulations of real conditions (nonhomogeneous ground reflectivities) were performed for different snow lines in the Sonnblick region. The average albedos obtained when all the surroundings were covered with snow were 0.32-0.63 with low solar zenith angles and 0.38-0.77 with a 40 degrees solar zenith angle.

4.
Photochem Photobiol ; 69(4): 464-70, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10212578

ABSTRACT

The UV spectral irradiance on horizontal and vertically oriented surfaces was measured throughout a cloudless day (18 July 1995) at Izana station, Tenerife, using a Bentham DTM300 spectroradiometer scanning from 290 to 500 nm in steps of 5 nm. Results show that irradiance measured on a horizontal surface is not proportional to irradiance on a vertical surface. The relation between the two depends upon orientation of the vertical surface, zenith angle and wavelength. At short UVB wavelengths surfaces directed toward the solar azimuth received their maximum irradiances much closer to solar noon than the maxima for longer wavelengths. Some vertical surfaces also received significantly more irradiance than the horizontal surface at long wavelengths during all but the central hours of the day, while at short wavelengths all vertical irradiances were less than the horizontal except for the measurements at the extreme ends of the day. Erythemally effective radiation followed the diurnal pattern of irradiations for short UVB wavelengths.


Subject(s)
Ultraviolet Rays , Humans , Photobiology , Risk Factors , Skin/radiation effects , Spain , Ultraviolet Rays/adverse effects
5.
Nucleic Acids Res ; 24(24): 5026-33, 1996 Dec 15.
Article in English | MEDLINE | ID: mdl-9016676

ABSTRACT

We characterized the behavior of polymerase chain reactions (PCR) using degraded DNA as a template. We first demonstrated that fragments larger than the initial template fragments can be amplified if overlapping fragments are allowed to anneal and extend prior to routine PCR. Amplification products increase when degraded genomic DNA is pretreated by polymerization in the absence of specific primers. Secondly, we measured nucleotide uptake as a function of template DNA degradation. dNTP incorporation initially increases with increasing DNA fragmentation and then declines when the DNA becomes highly degraded. We demonstrated that dNTP uptake continues for >10 polymerization cycles and is affected by the quality and quantity of template DNA and by the amount of substrate dNTP. These results suggest that although reconstruction of degraded DNA may allow amplification of large fragments, reconstructive polymerization and amplification polymerization may compete. This was confirmed in PCR where the addition of degraded DNA reduced the resultant product. Because terminal deoxynucleotidyl transferase activity of Taq polymerase may inhibit 3' annealing and restrict the length of template reconstruction, we suggest modified PCR techniques which separate reconstructive and amplification polymerization reactions.


Subject(s)
DNA Fragmentation , DNA/genetics , Polymerase Chain Reaction/methods , DNA Primers , Templates, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...