Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 161(1)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38953441

ABSTRACT

Our recently published [Weike et al., J. Chem. Phys. 159, 244119 (2023)] spin-orbit coupled diabatic potential energy model for HI is used in a thorough analysis of bound and quasi-bound states as well as elastic and inelastic processes in H + I collisions. The potential energy model, designed explicitly for studying scattering, accurately describes the various couplings in the system, which lead to complex dynamics. Ro-vibronic bound and quasi-bound states related to the adiabatic electronic ground state and an excited electronic state are analyzed. Calculations using the full 104 × 104 diabatic matrix model or a single adiabatic state are compared in order to investigate approximations in the latter. Elastic and inelastic scattering cross sections as well as thermal rates between the ground and first excited fine structure levels of iodine are computed for collision energies up to 12 500 cm-1. Resonances related to the quasi-bound states are analyzed in terms of their energy, width, lifetime, and decay probabilities. The effect of different resonances on the thermal rates is discussed. Resonances between 30 000 and 40 000 cm-1 are also studied for selected values of the total angular momentum, in particular their decay probabilities into different final states of iodine and hence their potential effect on branching ratios in photodissociation of HI.

2.
J Phys Chem A ; 128(21): 4353-4368, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38748493

ABSTRACT

The diabatization of reactive systems for more than just a couple of states is a very demanding problem and generally requires advanced diabatization techniques. Especially for dissociative processes, the drastic changes in the adiabatic wave functions often would require large diabatic state bases, which quickly become impractical. Recently, we addressed this problem by the compensation states approach developed in the context of our hybrid diabatization scheme. This scheme utilizes wave function as well as energy data in combination with a diabatic potential model. In regions where the initial diabatic state basis becomes insufficient for an appropriate representation of the adiabatic states, new model states are generated. The new model states compensate for the state space not spanned by the initial diabatic basis. Such a compensation state is obtained by projecting the initial diabatic state space out of the adiabatic wave function. This yields a very efficient basis representation of the electronic Hamiltonian. The present work presents two new aspects. First, it is shown how other operators like the spin-orbit operator in the framework of the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) can be evaluated in this compact model state space without losing the correct wave function information and accuracy. Second, the extension of the approach to multidimensional potential energy surface models is presented for methyl iodide including the C-I dissociation coordinate and the angular H3C-I bending coordinates.

3.
J Chem Phys ; 160(6)2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38341788

ABSTRACT

The Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach is a method to generate fully coupled diabatic potential energy surfaces (PESs) including relativistic effects, especially spin-orbit coupling. The spin-orbit coupling of a full molecule is determined only by the atomic states of selected relativistically treated atoms. The full molecular coupling effect is obtained by a diabatization with respect to asymptotic states, resulting in the correct geometry dependence of the spin-orbit effect. The ERCAR approach has been developed over the last decade and initially only for molecules with a single relativistic atom. This work presents its extension to molecules with more than a single relativistic atom using the iodine molecule as a proof-of-principle example. The theory for the general multiple atomic ERCAR approach is given. In this case, the diabatic basis is defined at the asymptote where all relativistic atoms are separated from the remaining molecular fragment. The effective spin-orbit operator is then a sum of spin-orbit operators acting on isolated relativistic atoms. PESs for the iodine molecule are developed within the new approach and it is shown that the resulting fine structure states are in good agreement with spin-orbit ab initio calculations.

4.
J Chem Phys ; 159(24)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38156638

ABSTRACT

The scattering of H by I is a prototypical model system for light-heavy scattering in which relativistic coupling effects must be taken into account. Scattering calculations depend strongly on the accuracy of the potential energy surface (PES) model. The methodology to obtain such an accurate PES model suitable for scattering calculations is presented, which includes spin-orbit (SO) coupling within the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach. In this approach, the SO coupling is determined only for the atomic states of the heavy atom, and the geometry dependence of the SO effect is accounted for by a diabatization with respect to asymptotic states. The accuracy of the full model, composed of a Coulomb part and the SO model, is achieved in the following ways. For the SO model, the extended ERCAR approach is applied, which accounts for both intra-state and inter-state SO coupling, and an extended number of diabatic states are included. The corresponding coupling constants for the SO operator are obtained from experiments, which are more accurate than computed values. In the Coulomb Hamiltonian model, special attention is paid to the long range behavior and accurate c6 dispersion coefficients. The flexibility and accuracy of this Coulomb model are achieved by combining partial models for three different regions. These are merged via artificial neural networks, which also refine the model further. In this way, an extremely accurate PES model for hydrogen iodide is obtained, suitable for accurate scattering calculations.

5.
J Chem Phys ; 156(22): 224109, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35705416

ABSTRACT

The theoretical treatment of the quantum dynamics of the phenyl iodide photodissociation requires an accurate analytical potential energy surface (PES) model. This model must also account for spin-orbit (SO) coupling. This study is the first step to construct accurate SO coupled PESs, namely, for the C-I dissociation coordinate. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) method developed over the past ten years. The SO-free Hamiltonian is represented in an asymptotic diabatic basis and then combined with an atomic effective relativistic coupling operator determined analytically. In contrast to the previously studied cases (HI, CH3I), the diabatic basis states are due to excitations in the phenyl fragment rather than the iodine atom. An accurate analytical model of the ab initio reference data is determined in two steps. The first step is a simple reference model describing the data qualitatively. This reference model is corrected through a trained artificial neural-network to achieve high accuracy. The SO-free and the fine structure states resulting from this ERCAR model are discussed extensively in the context of the photodissociation.

SELECTION OF CITATIONS
SEARCH DETAIL
...